Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold
Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospi...
Ausführliche Beschreibung
Autor*in: |
Akhtar, Maria [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Clinical Oral Investigations - Springer-Verlag, 2001, 26(2021), 3 vom: 22. Okt., Seite 2607-2618 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2021 ; number:3 ; day:22 ; month:10 ; pages:2607-2618 |
Links: |
---|
DOI / URN: |
10.1007/s00784-021-04230-x |
---|
Katalog-ID: |
SPR046402047 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046402047 | ||
003 | DE-627 | ||
005 | 20230507123355.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220306s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00784-021-04230-x |2 doi | |
035 | |a (DE-627)SPR046402047 | ||
035 | |a (SPR)s00784-021-04230-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Akhtar, Maria |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. | ||
650 | 4 | |a Poly-ε-caprolactone |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electrospinning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nanofiber |7 (dpeaa)DE-He213 | |
650 | 4 | |a LiCl |7 (dpeaa)DE-He213 | |
650 | 4 | |a β-Catenin |7 (dpeaa)DE-He213 | |
650 | 4 | |a Osteoblast differentiation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Woo, Kyung Mi |4 aut | |
700 | 1 | |a Tahir, Muhammad |4 aut | |
700 | 1 | |a Wu, Wenhui |4 aut | |
700 | 1 | |a Elango, Jeevithan |4 aut | |
700 | 1 | |a Mirza, Munazza R. |4 aut | |
700 | 1 | |a Khan, Maryam |4 aut | |
700 | 1 | |a Shamim, Saba |4 aut | |
700 | 1 | |a Arany, Praveen R. |4 aut | |
700 | 1 | |a Rahman, Saeed Ur |0 (orcid)0000-0003-2234-2274 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Clinical Oral Investigations |d Springer-Verlag, 2001 |g 26(2021), 3 vom: 22. Okt., Seite 2607-2618 |w (DE-627)SPR007794231 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2021 |g number:3 |g day:22 |g month:10 |g pages:2607-2618 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00784-021-04230-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 26 |j 2021 |e 3 |b 22 |c 10 |h 2607-2618 |
author_variant |
m a ma k m w km kmw m t mt w w ww j e je m r m mr mrm m k mk s s ss p r a pr pra s u r su sur |
---|---|
matchkey_str |
akhtarmariawookyungmitahirmuhammadwuwenh:2021----:nacnotolsdfeetainhogsaloeuenoprtdn |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00784-021-04230-x doi (DE-627)SPR046402047 (SPR)s00784-021-04230-x-e DE-627 ger DE-627 rakwb eng Akhtar, Maria verfasserin aut Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. Poly-ε-caprolactone (dpeaa)DE-He213 Electrospinning (dpeaa)DE-He213 Nanofiber (dpeaa)DE-He213 LiCl (dpeaa)DE-He213 β-Catenin (dpeaa)DE-He213 Osteoblast differentiation (dpeaa)DE-He213 Woo, Kyung Mi aut Tahir, Muhammad aut Wu, Wenhui aut Elango, Jeevithan aut Mirza, Munazza R. aut Khan, Maryam aut Shamim, Saba aut Arany, Praveen R. aut Rahman, Saeed Ur (orcid)0000-0003-2234-2274 aut Enthalten in Clinical Oral Investigations Springer-Verlag, 2001 26(2021), 3 vom: 22. Okt., Seite 2607-2618 (DE-627)SPR007794231 nnns volume:26 year:2021 number:3 day:22 month:10 pages:2607-2618 https://dx.doi.org/10.1007/s00784-021-04230-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2021 3 22 10 2607-2618 |
spelling |
10.1007/s00784-021-04230-x doi (DE-627)SPR046402047 (SPR)s00784-021-04230-x-e DE-627 ger DE-627 rakwb eng Akhtar, Maria verfasserin aut Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. Poly-ε-caprolactone (dpeaa)DE-He213 Electrospinning (dpeaa)DE-He213 Nanofiber (dpeaa)DE-He213 LiCl (dpeaa)DE-He213 β-Catenin (dpeaa)DE-He213 Osteoblast differentiation (dpeaa)DE-He213 Woo, Kyung Mi aut Tahir, Muhammad aut Wu, Wenhui aut Elango, Jeevithan aut Mirza, Munazza R. aut Khan, Maryam aut Shamim, Saba aut Arany, Praveen R. aut Rahman, Saeed Ur (orcid)0000-0003-2234-2274 aut Enthalten in Clinical Oral Investigations Springer-Verlag, 2001 26(2021), 3 vom: 22. Okt., Seite 2607-2618 (DE-627)SPR007794231 nnns volume:26 year:2021 number:3 day:22 month:10 pages:2607-2618 https://dx.doi.org/10.1007/s00784-021-04230-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2021 3 22 10 2607-2618 |
allfields_unstemmed |
10.1007/s00784-021-04230-x doi (DE-627)SPR046402047 (SPR)s00784-021-04230-x-e DE-627 ger DE-627 rakwb eng Akhtar, Maria verfasserin aut Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. Poly-ε-caprolactone (dpeaa)DE-He213 Electrospinning (dpeaa)DE-He213 Nanofiber (dpeaa)DE-He213 LiCl (dpeaa)DE-He213 β-Catenin (dpeaa)DE-He213 Osteoblast differentiation (dpeaa)DE-He213 Woo, Kyung Mi aut Tahir, Muhammad aut Wu, Wenhui aut Elango, Jeevithan aut Mirza, Munazza R. aut Khan, Maryam aut Shamim, Saba aut Arany, Praveen R. aut Rahman, Saeed Ur (orcid)0000-0003-2234-2274 aut Enthalten in Clinical Oral Investigations Springer-Verlag, 2001 26(2021), 3 vom: 22. Okt., Seite 2607-2618 (DE-627)SPR007794231 nnns volume:26 year:2021 number:3 day:22 month:10 pages:2607-2618 https://dx.doi.org/10.1007/s00784-021-04230-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2021 3 22 10 2607-2618 |
allfieldsGer |
10.1007/s00784-021-04230-x doi (DE-627)SPR046402047 (SPR)s00784-021-04230-x-e DE-627 ger DE-627 rakwb eng Akhtar, Maria verfasserin aut Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. Poly-ε-caprolactone (dpeaa)DE-He213 Electrospinning (dpeaa)DE-He213 Nanofiber (dpeaa)DE-He213 LiCl (dpeaa)DE-He213 β-Catenin (dpeaa)DE-He213 Osteoblast differentiation (dpeaa)DE-He213 Woo, Kyung Mi aut Tahir, Muhammad aut Wu, Wenhui aut Elango, Jeevithan aut Mirza, Munazza R. aut Khan, Maryam aut Shamim, Saba aut Arany, Praveen R. aut Rahman, Saeed Ur (orcid)0000-0003-2234-2274 aut Enthalten in Clinical Oral Investigations Springer-Verlag, 2001 26(2021), 3 vom: 22. Okt., Seite 2607-2618 (DE-627)SPR007794231 nnns volume:26 year:2021 number:3 day:22 month:10 pages:2607-2618 https://dx.doi.org/10.1007/s00784-021-04230-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2021 3 22 10 2607-2618 |
allfieldsSound |
10.1007/s00784-021-04230-x doi (DE-627)SPR046402047 (SPR)s00784-021-04230-x-e DE-627 ger DE-627 rakwb eng Akhtar, Maria verfasserin aut Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. Poly-ε-caprolactone (dpeaa)DE-He213 Electrospinning (dpeaa)DE-He213 Nanofiber (dpeaa)DE-He213 LiCl (dpeaa)DE-He213 β-Catenin (dpeaa)DE-He213 Osteoblast differentiation (dpeaa)DE-He213 Woo, Kyung Mi aut Tahir, Muhammad aut Wu, Wenhui aut Elango, Jeevithan aut Mirza, Munazza R. aut Khan, Maryam aut Shamim, Saba aut Arany, Praveen R. aut Rahman, Saeed Ur (orcid)0000-0003-2234-2274 aut Enthalten in Clinical Oral Investigations Springer-Verlag, 2001 26(2021), 3 vom: 22. Okt., Seite 2607-2618 (DE-627)SPR007794231 nnns volume:26 year:2021 number:3 day:22 month:10 pages:2607-2618 https://dx.doi.org/10.1007/s00784-021-04230-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2021 3 22 10 2607-2618 |
language |
English |
source |
Enthalten in Clinical Oral Investigations 26(2021), 3 vom: 22. Okt., Seite 2607-2618 volume:26 year:2021 number:3 day:22 month:10 pages:2607-2618 |
sourceStr |
Enthalten in Clinical Oral Investigations 26(2021), 3 vom: 22. Okt., Seite 2607-2618 volume:26 year:2021 number:3 day:22 month:10 pages:2607-2618 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Poly-ε-caprolactone Electrospinning Nanofiber LiCl β-Catenin Osteoblast differentiation |
isfreeaccess_bool |
false |
container_title |
Clinical Oral Investigations |
authorswithroles_txt_mv |
Akhtar, Maria @@aut@@ Woo, Kyung Mi @@aut@@ Tahir, Muhammad @@aut@@ Wu, Wenhui @@aut@@ Elango, Jeevithan @@aut@@ Mirza, Munazza R. @@aut@@ Khan, Maryam @@aut@@ Shamim, Saba @@aut@@ Arany, Praveen R. @@aut@@ Rahman, Saeed Ur @@aut@@ |
publishDateDaySort_date |
2021-10-22T00:00:00Z |
hierarchy_top_id |
SPR007794231 |
id |
SPR046402047 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046402047</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507123355.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220306s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00784-021-04230-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046402047</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00784-021-04230-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akhtar, Maria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poly-ε-caprolactone</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrospinning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofiber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LiCl</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">β-Catenin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Osteoblast differentiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woo, Kyung Mi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tahir, Muhammad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wenhui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elango, Jeevithan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirza, Munazza R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Maryam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shamim, Saba</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arany, Praveen R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahman, Saeed Ur</subfield><subfield code="0">(orcid)0000-0003-2234-2274</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clinical Oral Investigations</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">26(2021), 3 vom: 22. Okt., Seite 2607-2618</subfield><subfield code="w">(DE-627)SPR007794231</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:2607-2618</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00784-021-04230-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">10</subfield><subfield code="h">2607-2618</subfield></datafield></record></collection>
|
author |
Akhtar, Maria |
spellingShingle |
Akhtar, Maria misc Poly-ε-caprolactone misc Electrospinning misc Nanofiber misc LiCl misc β-Catenin misc Osteoblast differentiation Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold |
authorStr |
Akhtar, Maria |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR007794231 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold Poly-ε-caprolactone (dpeaa)DE-He213 Electrospinning (dpeaa)DE-He213 Nanofiber (dpeaa)DE-He213 LiCl (dpeaa)DE-He213 β-Catenin (dpeaa)DE-He213 Osteoblast differentiation (dpeaa)DE-He213 |
topic |
misc Poly-ε-caprolactone misc Electrospinning misc Nanofiber misc LiCl misc β-Catenin misc Osteoblast differentiation |
topic_unstemmed |
misc Poly-ε-caprolactone misc Electrospinning misc Nanofiber misc LiCl misc β-Catenin misc Osteoblast differentiation |
topic_browse |
misc Poly-ε-caprolactone misc Electrospinning misc Nanofiber misc LiCl misc β-Catenin misc Osteoblast differentiation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Clinical Oral Investigations |
hierarchy_parent_id |
SPR007794231 |
hierarchy_top_title |
Clinical Oral Investigations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR007794231 |
title |
Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold |
ctrlnum |
(DE-627)SPR046402047 (SPR)s00784-021-04230-x-e |
title_full |
Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold |
author_sort |
Akhtar, Maria |
journal |
Clinical Oral Investigations |
journalStr |
Clinical Oral Investigations |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2607 |
author_browse |
Akhtar, Maria Woo, Kyung Mi Tahir, Muhammad Wu, Wenhui Elango, Jeevithan Mirza, Munazza R. Khan, Maryam Shamim, Saba Arany, Praveen R. Rahman, Saeed Ur |
container_volume |
26 |
format_se |
Elektronische Aufsätze |
author-letter |
Akhtar, Maria |
doi_str_mv |
10.1007/s00784-021-04230-x |
normlink |
(ORCID)0000-0003-2234-2274 |
normlink_prefix_str_mv |
(orcid)0000-0003-2234-2274 |
title_sort |
enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold |
title_auth |
Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold |
abstract |
Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
3 |
title_short |
Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold |
url |
https://dx.doi.org/10.1007/s00784-021-04230-x |
remote_bool |
true |
author2 |
Woo, Kyung Mi Tahir, Muhammad Wu, Wenhui Elango, Jeevithan Mirza, Munazza R. Khan, Maryam Shamim, Saba Arany, Praveen R. Rahman, Saeed Ur |
author2Str |
Woo, Kyung Mi Tahir, Muhammad Wu, Wenhui Elango, Jeevithan Mirza, Munazza R. Khan, Maryam Shamim, Saba Arany, Praveen R. Rahman, Saeed Ur |
ppnlink |
SPR007794231 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00784-021-04230-x |
up_date |
2024-07-03T22:18:39.554Z |
_version_ |
1803598031287746560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046402047</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507123355.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220306s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00784-021-04230-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046402047</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00784-021-04230-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akhtar, Maria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing osteoblast differentiation through small molecule-incorporated engineered nanofibrous scaffold</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Objective This study aimed to investigate the effect of small molecules incorporated into the engineered nanofibrous scaffold to enhance the osteoblast differentiation Materials and methods Poly-ε-caprolactone (PCL) nanofiber matrices with lithium chloride (LiCl) were fabricated using the electrospinning technique. Scaffolds were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). Scaffolds were seeded with MC3T3-E1 cells and assessed using Western blots (β-catenin), alamarBlue assay (proliferation), qPCR (osteoblast differentiation), and mineralization (Alizarin Red staining). Results We observed LiCl nanofiber scaffolds induced concentration-dependent cell proliferation that correlated with an increased β-catenin expression indicating sustained Wnt signaling. Next, we examined osteoblast differentiation markers such as osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) and noted increased expression in LiCl nanofiber scaffolds. We also noted increased bone morphogenetic protein (BMP-2, 4, and 7) expressions suggesting activated Wnt can promote cures to further osteogenic differentiation. Finally, Alizarin Red staining demonstrated increased mineral deposition in LiCl-incorporated nanofiber scaffolds. Conclusions Together, these results indicated that LiCl-incorporated nanofiber scaffolds enhance osteoblast differentiation. Clinical relevance Small molecule-incorporated nanofibrous scaffolds are an innovative clinical tool for bone tissue engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poly-ε-caprolactone</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrospinning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofiber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LiCl</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">β-Catenin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Osteoblast differentiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woo, Kyung Mi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tahir, Muhammad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wenhui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elango, Jeevithan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirza, Munazza R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Maryam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shamim, Saba</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arany, Praveen R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahman, Saeed Ur</subfield><subfield code="0">(orcid)0000-0003-2234-2274</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clinical Oral Investigations</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">26(2021), 3 vom: 22. Okt., Seite 2607-2618</subfield><subfield code="w">(DE-627)SPR007794231</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:2607-2618</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00784-021-04230-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">10</subfield><subfield code="h">2607-2618</subfield></datafield></record></collection>
|
score |
7.399295 |