An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation
Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this s...
Ausführliche Beschreibung
Autor*in: |
Li, Jinbao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Cellulose - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994, 29(2022), 4 vom: 01. Feb., Seite 2461-2477 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2022 ; number:4 ; day:01 ; month:02 ; pages:2461-2477 |
Links: |
---|
DOI / URN: |
10.1007/s10570-022-04442-8 |
---|
Katalog-ID: |
SPR046423753 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046423753 | ||
003 | DE-627 | ||
005 | 20230507124909.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220309s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10570-022-04442-8 |2 doi | |
035 | |a (DE-627)SPR046423753 | ||
035 | |a (SPR)s10570-022-04442-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, Jinbao |e verfasserin |4 aut | |
245 | 1 | 3 | |a An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022 | ||
520 | |a Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract | ||
650 | 4 | |a Cellulose nanofibrils |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hardwood cellulose |7 (dpeaa)DE-He213 | |
650 | 4 | |a Structure modification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Photothermal conversion materials |7 (dpeaa)DE-He213 | |
650 | 4 | |a Seawater purification |7 (dpeaa)DE-He213 | |
700 | 1 | |a Cui, Yuxin |4 aut | |
700 | 1 | |a Xiu, Huijuan |4 aut | |
700 | 1 | |a Wang, Weike |4 aut | |
700 | 1 | |a Du, Min |4 aut | |
700 | 1 | |a Yang, Xue |4 aut | |
700 | 1 | |a Xu, Qinghua |4 aut | |
700 | 1 | |a Kozliak, Evguenii |4 aut | |
700 | 1 | |a Ji, Yun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cellulose |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 |g 29(2022), 4 vom: 01. Feb., Seite 2461-2477 |w (DE-627)306353857 |w (DE-600)1496831-9 |x 1572-882X |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2022 |g number:4 |g day:01 |g month:02 |g pages:2461-2477 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10570-022-04442-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 29 |j 2022 |e 4 |b 01 |c 02 |h 2461-2477 |
author_variant |
j l jl y c yc h x hx w w ww m d md x y xy q x qx e k ek y j yj |
---|---|
matchkey_str |
article:1572882X:2022----::nnertvcluoeaecmoieaeilihotolbetutradrpriso |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10570-022-04442-8 doi (DE-627)SPR046423753 (SPR)s10570-022-04442-8-e DE-627 ger DE-627 rakwb eng Li, Jinbao verfasserin aut An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract Cellulose nanofibrils (dpeaa)DE-He213 Hardwood cellulose (dpeaa)DE-He213 Structure modification (dpeaa)DE-He213 Photothermal conversion materials (dpeaa)DE-He213 Seawater purification (dpeaa)DE-He213 Cui, Yuxin aut Xiu, Huijuan aut Wang, Weike aut Du, Min aut Yang, Xue aut Xu, Qinghua aut Kozliak, Evguenii aut Ji, Yun aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 4 vom: 01. Feb., Seite 2461-2477 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:4 day:01 month:02 pages:2461-2477 https://dx.doi.org/10.1007/s10570-022-04442-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 4 01 02 2461-2477 |
spelling |
10.1007/s10570-022-04442-8 doi (DE-627)SPR046423753 (SPR)s10570-022-04442-8-e DE-627 ger DE-627 rakwb eng Li, Jinbao verfasserin aut An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract Cellulose nanofibrils (dpeaa)DE-He213 Hardwood cellulose (dpeaa)DE-He213 Structure modification (dpeaa)DE-He213 Photothermal conversion materials (dpeaa)DE-He213 Seawater purification (dpeaa)DE-He213 Cui, Yuxin aut Xiu, Huijuan aut Wang, Weike aut Du, Min aut Yang, Xue aut Xu, Qinghua aut Kozliak, Evguenii aut Ji, Yun aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 4 vom: 01. Feb., Seite 2461-2477 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:4 day:01 month:02 pages:2461-2477 https://dx.doi.org/10.1007/s10570-022-04442-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 4 01 02 2461-2477 |
allfields_unstemmed |
10.1007/s10570-022-04442-8 doi (DE-627)SPR046423753 (SPR)s10570-022-04442-8-e DE-627 ger DE-627 rakwb eng Li, Jinbao verfasserin aut An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract Cellulose nanofibrils (dpeaa)DE-He213 Hardwood cellulose (dpeaa)DE-He213 Structure modification (dpeaa)DE-He213 Photothermal conversion materials (dpeaa)DE-He213 Seawater purification (dpeaa)DE-He213 Cui, Yuxin aut Xiu, Huijuan aut Wang, Weike aut Du, Min aut Yang, Xue aut Xu, Qinghua aut Kozliak, Evguenii aut Ji, Yun aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 4 vom: 01. Feb., Seite 2461-2477 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:4 day:01 month:02 pages:2461-2477 https://dx.doi.org/10.1007/s10570-022-04442-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 4 01 02 2461-2477 |
allfieldsGer |
10.1007/s10570-022-04442-8 doi (DE-627)SPR046423753 (SPR)s10570-022-04442-8-e DE-627 ger DE-627 rakwb eng Li, Jinbao verfasserin aut An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract Cellulose nanofibrils (dpeaa)DE-He213 Hardwood cellulose (dpeaa)DE-He213 Structure modification (dpeaa)DE-He213 Photothermal conversion materials (dpeaa)DE-He213 Seawater purification (dpeaa)DE-He213 Cui, Yuxin aut Xiu, Huijuan aut Wang, Weike aut Du, Min aut Yang, Xue aut Xu, Qinghua aut Kozliak, Evguenii aut Ji, Yun aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 4 vom: 01. Feb., Seite 2461-2477 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:4 day:01 month:02 pages:2461-2477 https://dx.doi.org/10.1007/s10570-022-04442-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 4 01 02 2461-2477 |
allfieldsSound |
10.1007/s10570-022-04442-8 doi (DE-627)SPR046423753 (SPR)s10570-022-04442-8-e DE-627 ger DE-627 rakwb eng Li, Jinbao verfasserin aut An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract Cellulose nanofibrils (dpeaa)DE-He213 Hardwood cellulose (dpeaa)DE-He213 Structure modification (dpeaa)DE-He213 Photothermal conversion materials (dpeaa)DE-He213 Seawater purification (dpeaa)DE-He213 Cui, Yuxin aut Xiu, Huijuan aut Wang, Weike aut Du, Min aut Yang, Xue aut Xu, Qinghua aut Kozliak, Evguenii aut Ji, Yun aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 4 vom: 01. Feb., Seite 2461-2477 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:4 day:01 month:02 pages:2461-2477 https://dx.doi.org/10.1007/s10570-022-04442-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 4 01 02 2461-2477 |
language |
English |
source |
Enthalten in Cellulose 29(2022), 4 vom: 01. Feb., Seite 2461-2477 volume:29 year:2022 number:4 day:01 month:02 pages:2461-2477 |
sourceStr |
Enthalten in Cellulose 29(2022), 4 vom: 01. Feb., Seite 2461-2477 volume:29 year:2022 number:4 day:01 month:02 pages:2461-2477 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cellulose nanofibrils Hardwood cellulose Structure modification Photothermal conversion materials Seawater purification |
isfreeaccess_bool |
false |
container_title |
Cellulose |
authorswithroles_txt_mv |
Li, Jinbao @@aut@@ Cui, Yuxin @@aut@@ Xiu, Huijuan @@aut@@ Wang, Weike @@aut@@ Du, Min @@aut@@ Yang, Xue @@aut@@ Xu, Qinghua @@aut@@ Kozliak, Evguenii @@aut@@ Ji, Yun @@aut@@ |
publishDateDaySort_date |
2022-02-01T00:00:00Z |
hierarchy_top_id |
306353857 |
id |
SPR046423753 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046423753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507124909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220309s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10570-022-04442-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046423753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10570-022-04442-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Jinbao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellulose nanofibrils</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardwood cellulose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure modification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photothermal conversion materials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seawater purification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Yuxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiu, Huijuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Weike</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Min</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Qinghua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kozliak, Evguenii</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Yun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cellulose</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994</subfield><subfield code="g">29(2022), 4 vom: 01. Feb., Seite 2461-2477</subfield><subfield code="w">(DE-627)306353857</subfield><subfield code="w">(DE-600)1496831-9</subfield><subfield code="x">1572-882X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2461-2477</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10570-022-04442-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">2461-2477</subfield></datafield></record></collection>
|
author |
Li, Jinbao |
spellingShingle |
Li, Jinbao misc Cellulose nanofibrils misc Hardwood cellulose misc Structure modification misc Photothermal conversion materials misc Seawater purification An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation |
authorStr |
Li, Jinbao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306353857 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-882X |
topic_title |
An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation Cellulose nanofibrils (dpeaa)DE-He213 Hardwood cellulose (dpeaa)DE-He213 Structure modification (dpeaa)DE-He213 Photothermal conversion materials (dpeaa)DE-He213 Seawater purification (dpeaa)DE-He213 |
topic |
misc Cellulose nanofibrils misc Hardwood cellulose misc Structure modification misc Photothermal conversion materials misc Seawater purification |
topic_unstemmed |
misc Cellulose nanofibrils misc Hardwood cellulose misc Structure modification misc Photothermal conversion materials misc Seawater purification |
topic_browse |
misc Cellulose nanofibrils misc Hardwood cellulose misc Structure modification misc Photothermal conversion materials misc Seawater purification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cellulose |
hierarchy_parent_id |
306353857 |
hierarchy_top_title |
Cellulose |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306353857 (DE-600)1496831-9 |
title |
An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation |
ctrlnum |
(DE-627)SPR046423753 (SPR)s10570-022-04442-8-e |
title_full |
An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation |
author_sort |
Li, Jinbao |
journal |
Cellulose |
journalStr |
Cellulose |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2461 |
author_browse |
Li, Jinbao Cui, Yuxin Xiu, Huijuan Wang, Weike Du, Min Yang, Xue Xu, Qinghua Kozliak, Evguenii Ji, Yun |
container_volume |
29 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Jinbao |
doi_str_mv |
10.1007/s10570-022-04442-8 |
title_sort |
integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation |
title_auth |
An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation |
abstract |
Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
abstractGer |
Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
abstract_unstemmed |
Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation |
url |
https://dx.doi.org/10.1007/s10570-022-04442-8 |
remote_bool |
true |
author2 |
Cui, Yuxin Xiu, Huijuan Wang, Weike Du, Min Yang, Xue Xu, Qinghua Kozliak, Evguenii Ji, Yun |
author2Str |
Cui, Yuxin Xiu, Huijuan Wang, Weike Du, Min Yang, Xue Xu, Qinghua Kozliak, Evguenii Ji, Yun |
ppnlink |
306353857 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10570-022-04442-8 |
up_date |
2024-07-03T22:26:29.042Z |
_version_ |
1803598523576352768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046423753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507124909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220309s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10570-022-04442-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046423753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10570-022-04442-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Jinbao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Solar-driven interfacial evaporation has broad application prospects for seawater desalination. There is an urgent need in developing new photothermal conversion materials yielding high water evaporation efficiency while featuring simple preparation, low cost and biodegradability. In this study, a porous cellulose based composite for photothermal conversion was manufactured using directional ice templating. The composite, made by one-pot molding, combined the light absorption and water transmission layers. The pore structure of the composite material was shown to be adjustable by controlling the hardwood/nanocellulose fiber ratio, thereby achieving an effective coupling of photothermal conversion efficiency and water evaporation rate. As a result, the material pore structure was significantly improved compared to the pure components, featuring low density/high buoyancy, high and anisotropic water transport rate combined with significant mechanical strength and low heat loss. The material showing the best performance contained 50% of each cellulose component, with the cellulose/carbon black/epoxy resin/polyamide resin weight ratio 3:1:2:1. Its solar energy absorption was up to 90.1% while the thermal conductivity was only 0.051 W $ m^{−1} $ $ K^{−1} $. The water evaporation rate was 1.26 kg $ m^{−2} $ $ h^{−1} $, 3.7 times faster than its natural evaporation, and the photothermal conversion efficiency was 81.3%. This study provides a simple yet efficient strategy for development of solar-driven photothermal conversion materials. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellulose nanofibrils</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardwood cellulose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure modification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photothermal conversion materials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seawater purification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Yuxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiu, Huijuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Weike</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Min</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Qinghua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kozliak, Evguenii</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Yun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cellulose</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994</subfield><subfield code="g">29(2022), 4 vom: 01. Feb., Seite 2461-2477</subfield><subfield code="w">(DE-627)306353857</subfield><subfield code="w">(DE-600)1496831-9</subfield><subfield code="x">1572-882X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2461-2477</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10570-022-04442-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">2461-2477</subfield></datafield></record></collection>
|
score |
7.401515 |