A constrained multi-objective optimization algorithm with two cooperative populations

Abstract Constrained multi-objective problems (CMOPs) require balancing convergence, diversity, and feasibility of solutions. Unfortunately, the existing constrained multi-objective optimization algorithms (CMOEAs) exhibit poor performance when solving the CMOPs with complex feasible regions. To sol...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhang, Jianlin [verfasserIn]

Cao, Jie

Zhao, Fuqing

Chen, Zuohan

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Constrained multi-objective optimization problem

Constrained multi-objective algorithm

Cooperative population

Constraint-handling technique

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Übergeordnetes Werk:

Enthalten in: Memetic computing - Berlin : Springer, 2009, 14(2022), 1 vom: 08. Feb., Seite 95-113

Übergeordnetes Werk:

volume:14 ; year:2022 ; number:1 ; day:08 ; month:02 ; pages:95-113

Links:

Volltext

DOI / URN:

10.1007/s12293-022-00360-1

Katalog-ID:

SPR046432663

Nicht das Richtige dabei?

Schreiben Sie uns!