Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes
Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to...
Ausführliche Beschreibung
Autor*in: |
Bengtson, Miles T. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© American Astronautical Society 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: The Journal of the Astronautical Sciences - Springer-Verlag, 2006, 69(2022), 1 vom: Feb., Seite 149-163 |
---|---|
Übergeordnetes Werk: |
volume:69 ; year:2022 ; number:1 ; month:02 ; pages:149-163 |
Links: |
---|
DOI / URN: |
10.1007/s40295-021-00298-5 |
---|
Katalog-ID: |
SPR04644694X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04644694X | ||
003 | DE-627 | ||
005 | 20230507125951.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40295-021-00298-5 |2 doi | |
035 | |a (DE-627)SPR04644694X | ||
035 | |a (SPR)s40295-021-00298-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Bengtson, Miles T. |e verfasserin |0 (orcid)0000-0001-5614-2460 |4 aut | |
245 | 1 | 0 | |a Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © American Astronautical Society 2022 | ||
520 | |a Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. | ||
650 | 4 | |a Space environment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electron fluxes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Material-radiation interactions |7 (dpeaa)DE-He213 | |
700 | 1 | |a Hooper, Charles T. |4 aut | |
700 | 1 | |a Hoffmann, Ryan C. |4 aut | |
700 | 1 | |a Engelhart, Daniel P. |4 aut | |
700 | 1 | |a Murray, Vanessa J. |4 aut | |
700 | 1 | |a Ferguson, Dale C. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The Journal of the Astronautical Sciences |d Springer-Verlag, 2006 |g 69(2022), 1 vom: Feb., Seite 149-163 |w (DE-627)SPR036426385 |7 nnns |
773 | 1 | 8 | |g volume:69 |g year:2022 |g number:1 |g month:02 |g pages:149-163 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40295-021-00298-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 69 |j 2022 |e 1 |c 02 |h 149-163 |
author_variant |
m t b mt mtb c t h ct cth r c h rc rch d p e dp dpe v j m vj vjm d c f dc dcf |
---|---|
matchkey_str |
bengtsonmilesthoopercharlesthoffmannryan:2022----:oiainncnetoipoelbrtrsmltoos |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40295-021-00298-5 doi (DE-627)SPR04644694X (SPR)s40295-021-00298-5-e DE-627 ger DE-627 rakwb eng Bengtson, Miles T. verfasserin (orcid)0000-0001-5614-2460 aut Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2022 Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. Space environment (dpeaa)DE-He213 Electron fluxes (dpeaa)DE-He213 Material-radiation interactions (dpeaa)DE-He213 Hooper, Charles T. aut Hoffmann, Ryan C. aut Engelhart, Daniel P. aut Murray, Vanessa J. aut Ferguson, Dale C. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 69(2022), 1 vom: Feb., Seite 149-163 (DE-627)SPR036426385 nnns volume:69 year:2022 number:1 month:02 pages:149-163 https://dx.doi.org/10.1007/s40295-021-00298-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 69 2022 1 02 149-163 |
spelling |
10.1007/s40295-021-00298-5 doi (DE-627)SPR04644694X (SPR)s40295-021-00298-5-e DE-627 ger DE-627 rakwb eng Bengtson, Miles T. verfasserin (orcid)0000-0001-5614-2460 aut Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2022 Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. Space environment (dpeaa)DE-He213 Electron fluxes (dpeaa)DE-He213 Material-radiation interactions (dpeaa)DE-He213 Hooper, Charles T. aut Hoffmann, Ryan C. aut Engelhart, Daniel P. aut Murray, Vanessa J. aut Ferguson, Dale C. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 69(2022), 1 vom: Feb., Seite 149-163 (DE-627)SPR036426385 nnns volume:69 year:2022 number:1 month:02 pages:149-163 https://dx.doi.org/10.1007/s40295-021-00298-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 69 2022 1 02 149-163 |
allfields_unstemmed |
10.1007/s40295-021-00298-5 doi (DE-627)SPR04644694X (SPR)s40295-021-00298-5-e DE-627 ger DE-627 rakwb eng Bengtson, Miles T. verfasserin (orcid)0000-0001-5614-2460 aut Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2022 Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. Space environment (dpeaa)DE-He213 Electron fluxes (dpeaa)DE-He213 Material-radiation interactions (dpeaa)DE-He213 Hooper, Charles T. aut Hoffmann, Ryan C. aut Engelhart, Daniel P. aut Murray, Vanessa J. aut Ferguson, Dale C. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 69(2022), 1 vom: Feb., Seite 149-163 (DE-627)SPR036426385 nnns volume:69 year:2022 number:1 month:02 pages:149-163 https://dx.doi.org/10.1007/s40295-021-00298-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 69 2022 1 02 149-163 |
allfieldsGer |
10.1007/s40295-021-00298-5 doi (DE-627)SPR04644694X (SPR)s40295-021-00298-5-e DE-627 ger DE-627 rakwb eng Bengtson, Miles T. verfasserin (orcid)0000-0001-5614-2460 aut Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2022 Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. Space environment (dpeaa)DE-He213 Electron fluxes (dpeaa)DE-He213 Material-radiation interactions (dpeaa)DE-He213 Hooper, Charles T. aut Hoffmann, Ryan C. aut Engelhart, Daniel P. aut Murray, Vanessa J. aut Ferguson, Dale C. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 69(2022), 1 vom: Feb., Seite 149-163 (DE-627)SPR036426385 nnns volume:69 year:2022 number:1 month:02 pages:149-163 https://dx.doi.org/10.1007/s40295-021-00298-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 69 2022 1 02 149-163 |
allfieldsSound |
10.1007/s40295-021-00298-5 doi (DE-627)SPR04644694X (SPR)s40295-021-00298-5-e DE-627 ger DE-627 rakwb eng Bengtson, Miles T. verfasserin (orcid)0000-0001-5614-2460 aut Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2022 Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. Space environment (dpeaa)DE-He213 Electron fluxes (dpeaa)DE-He213 Material-radiation interactions (dpeaa)DE-He213 Hooper, Charles T. aut Hoffmann, Ryan C. aut Engelhart, Daniel P. aut Murray, Vanessa J. aut Ferguson, Dale C. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 69(2022), 1 vom: Feb., Seite 149-163 (DE-627)SPR036426385 nnns volume:69 year:2022 number:1 month:02 pages:149-163 https://dx.doi.org/10.1007/s40295-021-00298-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 69 2022 1 02 149-163 |
language |
English |
source |
Enthalten in The Journal of the Astronautical Sciences 69(2022), 1 vom: Feb., Seite 149-163 volume:69 year:2022 number:1 month:02 pages:149-163 |
sourceStr |
Enthalten in The Journal of the Astronautical Sciences 69(2022), 1 vom: Feb., Seite 149-163 volume:69 year:2022 number:1 month:02 pages:149-163 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Space environment Electron fluxes Material-radiation interactions |
isfreeaccess_bool |
false |
container_title |
The Journal of the Astronautical Sciences |
authorswithroles_txt_mv |
Bengtson, Miles T. @@aut@@ Hooper, Charles T. @@aut@@ Hoffmann, Ryan C. @@aut@@ Engelhart, Daniel P. @@aut@@ Murray, Vanessa J. @@aut@@ Ferguson, Dale C. @@aut@@ |
publishDateDaySort_date |
2022-02-01T00:00:00Z |
hierarchy_top_id |
SPR036426385 |
id |
SPR04644694X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04644694X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507125951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40295-021-00298-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04644694X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40295-021-00298-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bengtson, Miles T.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5614-2460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Astronautical Society 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space environment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron fluxes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Material-radiation interactions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hooper, Charles T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoffmann, Ryan C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engelhart, Daniel P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murray, Vanessa J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferguson, Dale C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Journal of the Astronautical Sciences</subfield><subfield code="d">Springer-Verlag, 2006</subfield><subfield code="g">69(2022), 1 vom: Feb., Seite 149-163</subfield><subfield code="w">(DE-627)SPR036426385</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:69</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:149-163</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40295-021-00298-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">69</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="c">02</subfield><subfield code="h">149-163</subfield></datafield></record></collection>
|
author |
Bengtson, Miles T. |
spellingShingle |
Bengtson, Miles T. misc Space environment misc Electron fluxes misc Material-radiation interactions Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes |
authorStr |
Bengtson, Miles T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR036426385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes Space environment (dpeaa)DE-He213 Electron fluxes (dpeaa)DE-He213 Material-radiation interactions (dpeaa)DE-He213 |
topic |
misc Space environment misc Electron fluxes misc Material-radiation interactions |
topic_unstemmed |
misc Space environment misc Electron fluxes misc Material-radiation interactions |
topic_browse |
misc Space environment misc Electron fluxes misc Material-radiation interactions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Journal of the Astronautical Sciences |
hierarchy_parent_id |
SPR036426385 |
hierarchy_top_title |
The Journal of the Astronautical Sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR036426385 |
title |
Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes |
ctrlnum |
(DE-627)SPR04644694X (SPR)s40295-021-00298-5-e |
title_full |
Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes |
author_sort |
Bengtson, Miles T. |
journal |
The Journal of the Astronautical Sciences |
journalStr |
The Journal of the Astronautical Sciences |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
149 |
author_browse |
Bengtson, Miles T. Hooper, Charles T. Hoffmann, Ryan C. Engelhart, Daniel P. Murray, Vanessa J. Ferguson, Dale C. |
container_volume |
69 |
format_se |
Elektronische Aufsätze |
author-letter |
Bengtson, Miles T. |
doi_str_mv |
10.1007/s40295-021-00298-5 |
normlink |
(ORCID)0000-0001-5614-2460 |
normlink_prefix_str_mv |
(orcid)0000-0001-5614-2460 |
title_sort |
motivation and concept for improved laboratory simulation of space electron fluxes |
title_auth |
Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes |
abstract |
Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. © American Astronautical Society 2022 |
abstractGer |
Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. © American Astronautical Society 2022 |
abstract_unstemmed |
Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns. © American Astronautical Society 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
1 |
title_short |
Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes |
url |
https://dx.doi.org/10.1007/s40295-021-00298-5 |
remote_bool |
true |
author2 |
Hooper, Charles T. Hoffmann, Ryan C. Engelhart, Daniel P. Murray, Vanessa J. Ferguson, Dale C. |
author2Str |
Hooper, Charles T. Hoffmann, Ryan C. Engelhart, Daniel P. Murray, Vanessa J. Ferguson, Dale C. |
ppnlink |
SPR036426385 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40295-021-00298-5 |
up_date |
2024-07-03T22:34:36.807Z |
_version_ |
1803599035037122560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04644694X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507125951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40295-021-00298-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04644694X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40295-021-00298-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bengtson, Miles T.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5614-2460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Motivation and Concept for Improved Laboratory Simulation of Space Electron Fluxes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Astronautical Society 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Many space environments contain energetic electrons distributed across a broad spectrum of energies which are damaging to spacecraft materials and components. To characterize degradation and ensure adequate end-of-life performance, studies are often conducted in which samples are exposed to energetic electron fluxes in vacuum chambers. However, conventional electron guns used for such testing emit electrons monoenergetically, whereas the actual space environment contains electrons across a spectrum of energies. Physical phenomena resulting from energetic electron irradiation depend strongly on the energy of the incident particles, and synergistic effects can result from the combined effects of multiple energies. Therefore, it is questionable how well many vacuum chamber experiments represent the on-orbit degradation behavior, and a clear need exists for improved laboratory simulation of space electron fluxes. This paper provides a brief review of previous studies, underscores the limitations of monoenergetic fluxes, and discusses several alternatives for simulating the space electron environment in a laboratory. Next, a concept for a novel multi-energy electron source is presented. This source presents numerous advantages over the existing techniques for laboratory simulation of space electron fluxes. Finally, Monte Carlo N-Particle (MCNP) simulations are presented for energetic electrons incident on polyimide. These simulations demonstrate the proposed multi-energy electron gun is capable of producing space-representative damage with higher accuracy than monoenergetic guns.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space environment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron fluxes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Material-radiation interactions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hooper, Charles T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoffmann, Ryan C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engelhart, Daniel P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murray, Vanessa J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferguson, Dale C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Journal of the Astronautical Sciences</subfield><subfield code="d">Springer-Verlag, 2006</subfield><subfield code="g">69(2022), 1 vom: Feb., Seite 149-163</subfield><subfield code="w">(DE-627)SPR036426385</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:69</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:149-163</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40295-021-00298-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">69</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="c">02</subfield><subfield code="h">149-163</subfield></datafield></record></collection>
|
score |
7.4006186 |