Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120
Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrabi...
Ausführliche Beschreibung
Autor*in: |
Anjali, K P [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Indian Academy of Sciences 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Pramāna - Bangalore : Indian Inst. of Science, 1973, 96(2022), 1 vom: 13. Jan. |
---|---|
Übergeordnetes Werk: |
volume:96 ; year:2022 ; number:1 ; day:13 ; month:01 |
Links: |
---|
DOI / URN: |
10.1007/s12043-021-02248-0 |
---|
Katalog-ID: |
SPR04648227X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04648227X | ||
003 | DE-627 | ||
005 | 20230507082509.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220315s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12043-021-02248-0 |2 doi | |
035 | |a (DE-627)SPR04648227X | ||
035 | |a (SPR)s12043-021-02248-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Anjali, K P |e verfasserin |4 aut | |
245 | 1 | 0 | |a Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Indian Academy of Sciences 2021 | ||
520 | |a Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. | ||
650 | 4 | |a Proton halo nuclei |7 (dpeaa)DE-He213 | |
650 | 4 | |a superheavy nuclei |7 (dpeaa)DE-He213 | |
650 | 4 | |a cluster decay |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coulomb and proximity potentials |7 (dpeaa)DE-He213 | |
700 | 1 | |a Prathapan, K |4 aut | |
700 | 1 | |a Biju, R K |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Pramāna |d Bangalore : Indian Inst. of Science, 1973 |g 96(2022), 1 vom: 13. Jan. |w (DE-627)328820806 |w (DE-600)2046354-6 |x 0973-7111 |7 nnns |
773 | 1 | 8 | |g volume:96 |g year:2022 |g number:1 |g day:13 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12043-021-02248-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 96 |j 2022 |e 1 |b 13 |c 01 |
author_variant |
k p a kp kpa k p kp r k b rk rkb |
---|---|
matchkey_str |
article:09737111:2022----::hoeiasuyfppaouliomditeeaoeeetiteuehayei |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s12043-021-02248-0 doi (DE-627)SPR04648227X (SPR)s12043-021-02248-0-e DE-627 ger DE-627 rakwb eng Anjali, K P verfasserin aut Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Academy of Sciences 2021 Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. Proton halo nuclei (dpeaa)DE-He213 superheavy nuclei (dpeaa)DE-He213 cluster decay (dpeaa)DE-He213 Coulomb and proximity potentials (dpeaa)DE-He213 Prathapan, K aut Biju, R K aut Enthalten in Pramāna Bangalore : Indian Inst. of Science, 1973 96(2022), 1 vom: 13. Jan. (DE-627)328820806 (DE-600)2046354-6 0973-7111 nnns volume:96 year:2022 number:1 day:13 month:01 https://dx.doi.org/10.1007/s12043-021-02248-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 96 2022 1 13 01 |
spelling |
10.1007/s12043-021-02248-0 doi (DE-627)SPR04648227X (SPR)s12043-021-02248-0-e DE-627 ger DE-627 rakwb eng Anjali, K P verfasserin aut Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Academy of Sciences 2021 Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. Proton halo nuclei (dpeaa)DE-He213 superheavy nuclei (dpeaa)DE-He213 cluster decay (dpeaa)DE-He213 Coulomb and proximity potentials (dpeaa)DE-He213 Prathapan, K aut Biju, R K aut Enthalten in Pramāna Bangalore : Indian Inst. of Science, 1973 96(2022), 1 vom: 13. Jan. (DE-627)328820806 (DE-600)2046354-6 0973-7111 nnns volume:96 year:2022 number:1 day:13 month:01 https://dx.doi.org/10.1007/s12043-021-02248-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 96 2022 1 13 01 |
allfields_unstemmed |
10.1007/s12043-021-02248-0 doi (DE-627)SPR04648227X (SPR)s12043-021-02248-0-e DE-627 ger DE-627 rakwb eng Anjali, K P verfasserin aut Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Academy of Sciences 2021 Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. Proton halo nuclei (dpeaa)DE-He213 superheavy nuclei (dpeaa)DE-He213 cluster decay (dpeaa)DE-He213 Coulomb and proximity potentials (dpeaa)DE-He213 Prathapan, K aut Biju, R K aut Enthalten in Pramāna Bangalore : Indian Inst. of Science, 1973 96(2022), 1 vom: 13. Jan. (DE-627)328820806 (DE-600)2046354-6 0973-7111 nnns volume:96 year:2022 number:1 day:13 month:01 https://dx.doi.org/10.1007/s12043-021-02248-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 96 2022 1 13 01 |
allfieldsGer |
10.1007/s12043-021-02248-0 doi (DE-627)SPR04648227X (SPR)s12043-021-02248-0-e DE-627 ger DE-627 rakwb eng Anjali, K P verfasserin aut Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Academy of Sciences 2021 Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. Proton halo nuclei (dpeaa)DE-He213 superheavy nuclei (dpeaa)DE-He213 cluster decay (dpeaa)DE-He213 Coulomb and proximity potentials (dpeaa)DE-He213 Prathapan, K aut Biju, R K aut Enthalten in Pramāna Bangalore : Indian Inst. of Science, 1973 96(2022), 1 vom: 13. Jan. (DE-627)328820806 (DE-600)2046354-6 0973-7111 nnns volume:96 year:2022 number:1 day:13 month:01 https://dx.doi.org/10.1007/s12043-021-02248-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 96 2022 1 13 01 |
allfieldsSound |
10.1007/s12043-021-02248-0 doi (DE-627)SPR04648227X (SPR)s12043-021-02248-0-e DE-627 ger DE-627 rakwb eng Anjali, K P verfasserin aut Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Academy of Sciences 2021 Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. Proton halo nuclei (dpeaa)DE-He213 superheavy nuclei (dpeaa)DE-He213 cluster decay (dpeaa)DE-He213 Coulomb and proximity potentials (dpeaa)DE-He213 Prathapan, K aut Biju, R K aut Enthalten in Pramāna Bangalore : Indian Inst. of Science, 1973 96(2022), 1 vom: 13. Jan. (DE-627)328820806 (DE-600)2046354-6 0973-7111 nnns volume:96 year:2022 number:1 day:13 month:01 https://dx.doi.org/10.1007/s12043-021-02248-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 96 2022 1 13 01 |
language |
English |
source |
Enthalten in Pramāna 96(2022), 1 vom: 13. Jan. volume:96 year:2022 number:1 day:13 month:01 |
sourceStr |
Enthalten in Pramāna 96(2022), 1 vom: 13. Jan. volume:96 year:2022 number:1 day:13 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Proton halo nuclei superheavy nuclei cluster decay Coulomb and proximity potentials |
isfreeaccess_bool |
false |
container_title |
Pramāna |
authorswithroles_txt_mv |
Anjali, K P @@aut@@ Prathapan, K @@aut@@ Biju, R K @@aut@@ |
publishDateDaySort_date |
2022-01-13T00:00:00Z |
hierarchy_top_id |
328820806 |
id |
SPR04648227X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04648227X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507082509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220315s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12043-021-02248-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04648227X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12043-021-02248-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anjali, K P</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Academy of Sciences 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton halo nuclei</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superheavy nuclei</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cluster decay</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coulomb and proximity potentials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prathapan, K</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biju, R K</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pramāna</subfield><subfield code="d">Bangalore : Indian Inst. of Science, 1973</subfield><subfield code="g">96(2022), 1 vom: 13. Jan.</subfield><subfield code="w">(DE-627)328820806</subfield><subfield code="w">(DE-600)2046354-6</subfield><subfield code="x">0973-7111</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:96</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12043-021-02248-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">96</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Anjali, K P |
spellingShingle |
Anjali, K P misc Proton halo nuclei misc superheavy nuclei misc cluster decay misc Coulomb and proximity potentials Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 |
authorStr |
Anjali, K P |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)328820806 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0973-7111 |
topic_title |
Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 Proton halo nuclei (dpeaa)DE-He213 superheavy nuclei (dpeaa)DE-He213 cluster decay (dpeaa)DE-He213 Coulomb and proximity potentials (dpeaa)DE-He213 |
topic |
misc Proton halo nuclei misc superheavy nuclei misc cluster decay misc Coulomb and proximity potentials |
topic_unstemmed |
misc Proton halo nuclei misc superheavy nuclei misc cluster decay misc Coulomb and proximity potentials |
topic_browse |
misc Proton halo nuclei misc superheavy nuclei misc cluster decay misc Coulomb and proximity potentials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Pramāna |
hierarchy_parent_id |
328820806 |
hierarchy_top_title |
Pramāna |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)328820806 (DE-600)2046354-6 |
title |
Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 |
ctrlnum |
(DE-627)SPR04648227X (SPR)s12043-021-02248-0-e |
title_full |
Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 |
author_sort |
Anjali, K P |
journal |
Pramāna |
journalStr |
Pramāna |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Anjali, K P Prathapan, K Biju, R K |
container_volume |
96 |
format_se |
Elektronische Aufsätze |
author-letter |
Anjali, K P |
doi_str_mv |
10.1007/s12043-021-02248-0 |
title_sort |
theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with z ranging from 115 to 120 |
title_auth |
Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 |
abstract |
Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. © Indian Academy of Sciences 2021 |
abstractGer |
Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. © Indian Academy of Sciences 2021 |
abstract_unstemmed |
Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay. © Indian Academy of Sciences 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120 |
url |
https://dx.doi.org/10.1007/s12043-021-02248-0 |
remote_bool |
true |
author2 |
Prathapan, K Biju, R K |
author2Str |
Prathapan, K Biju, R K |
ppnlink |
328820806 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12043-021-02248-0 |
up_date |
2024-07-03T22:48:22.636Z |
_version_ |
1803599900982640640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04648227X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507082509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220315s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12043-021-02248-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04648227X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12043-021-02248-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anjali, K P</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical study of 1p, 2p-halo nuclei formed via the decay of elements in the superheavy region with Z ranging from 115 to 120</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Academy of Sciences 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The radioactive decay probabilities of various proton halo (p-halo) nuclei from parent isotopes in the superheavy (SH) region, %$Z=%$115–120, were analysed by taking the Coulomb and proximity potential as the interacting barrier. The nuclear decay half-lives (%$t_{1/2})%$, barrier penetrability and various other attributes for the decay of p-halo nuclei such as %$^{8}%$B, %$^{9}%$C, %$^{11,12}%$N, %$^{17}%$F, %$^{17,18}%$ Ne, %$^{23}%$Al and %$^{26,27,28}%$P from the isotopes %$^{261\hbox {--}278}115%$, %$^{264\hbox {--}279}116%$, %$^{267\hbox {--}284}117%$, %$^{271\hbox {--}283}118%$, %$^{274\hbox {--}288}119%$ and %$^{277\hbox {--}285}120%$ are determined. From the determined decay lifetime values, it is understood that most of the p-halo decays are probable. The error bars in the halo radius are incorporated for the nuclear decay half-life for these p-halo nuclei. Moreover, the effects of shell closure in the daughter and the parent nuclei are also clear from the plots of calculated decay half-lives vs. neutron number of the daughter nuclei. Peak and dip in the plots show the closed shell effects of the parent and daughter nuclei respectively. We found the closed shell effect of the parent at %${N}_{p}\sim 152%$ and closed shell effect of the daughter nuclei at %${N}_{d} \sim 132, 142%$. Further, we have analysed the Geiger–Nuttall (GN) plots of logarithmic half-life time vs. %$Q^{{-}1/2}%$ and the universal curve of logarithmic half-life time against negative logarithm of the barrier penetrability for the chosen p-halo decay from the SH parents, %$Z=115\hbox {--}120%$ and are found to be linear. Also, we can find that the addition of proximity potential does not make any notable variation in the behaviour of the Geiger–Nuttall plots. Hence GN law is also applicable to p-halo decay.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton halo nuclei</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superheavy nuclei</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cluster decay</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coulomb and proximity potentials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prathapan, K</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biju, R K</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pramāna</subfield><subfield code="d">Bangalore : Indian Inst. of Science, 1973</subfield><subfield code="g">96(2022), 1 vom: 13. Jan.</subfield><subfield code="w">(DE-627)328820806</subfield><subfield code="w">(DE-600)2046354-6</subfield><subfield code="x">0973-7111</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:96</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12043-021-02248-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">96</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.401016 |