Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice
Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 di...
Ausführliche Beschreibung
Autor*in: |
Sundaramoorthy, Mohan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Indian Society for Plant Physiology 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Indian journal of plant physiology - New Delhi, 2000, 27(2022), 1 vom: 29. Jan., Seite 11-21 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2022 ; number:1 ; day:29 ; month:01 ; pages:11-21 |
Links: |
---|
DOI / URN: |
10.1007/s40502-021-00641-w |
---|
Katalog-ID: |
SPR04649667X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04649667X | ||
003 | DE-627 | ||
005 | 20230507132504.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220316s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40502-021-00641-w |2 doi | |
035 | |a (DE-627)SPR04649667X | ||
035 | |a (SPR)s40502-021-00641-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sundaramoorthy, Mohan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Indian Society for Plant Physiology 2022 | ||
520 | |a Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. | ||
650 | 4 | |a Rice |7 (dpeaa)DE-He213 | |
650 | 4 | |a Population structure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Grain yield |7 (dpeaa)DE-He213 | |
650 | 4 | |a Association mapping |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ramasamy, Shobica Priya |4 aut | |
700 | 1 | |a Rajagopalan, Veera Ranjani |4 aut | |
700 | 1 | |a Ramalingam, Ajay Prasanth |4 aut | |
700 | 1 | |a Ayyenar, Bharathi |4 aut | |
700 | 1 | |a Mohanavel, Vignesh |4 aut | |
700 | 1 | |a Narayanan, Manikanda Boopathi |4 aut | |
700 | 1 | |a Muthurajan, Raveendran |0 (orcid)0000-0002-8803-7662 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Indian journal of plant physiology |d New Delhi, 2000 |g 27(2022), 1 vom: 29. Jan., Seite 11-21 |w (DE-627)670213330 |w (DE-600)2632084-8 |x 0974-0252 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2022 |g number:1 |g day:29 |g month:01 |g pages:11-21 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40502-021-00641-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_281 | ||
951 | |a AR | ||
952 | |d 27 |j 2022 |e 1 |b 29 |c 01 |h 11-21 |
author_variant |
m s ms s p r sp spr v r r vr vrr a p r ap apr b a ba v m vm m b n mb mbn r m rm |
---|---|
matchkey_str |
article:09740252:2022----::iosaeeoeiesoitompigdniidoelcfr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40502-021-00641-w doi (DE-627)SPR04649667X (SPR)s40502-021-00641-w-e DE-627 ger DE-627 rakwb eng Sundaramoorthy, Mohan verfasserin aut Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Society for Plant Physiology 2022 Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. Rice (dpeaa)DE-He213 Population structure (dpeaa)DE-He213 Grain yield (dpeaa)DE-He213 Association mapping (dpeaa)DE-He213 Ramasamy, Shobica Priya aut Rajagopalan, Veera Ranjani aut Ramalingam, Ajay Prasanth aut Ayyenar, Bharathi aut Mohanavel, Vignesh aut Narayanan, Manikanda Boopathi aut Muthurajan, Raveendran (orcid)0000-0002-8803-7662 aut Enthalten in Indian journal of plant physiology New Delhi, 2000 27(2022), 1 vom: 29. Jan., Seite 11-21 (DE-627)670213330 (DE-600)2632084-8 0974-0252 nnns volume:27 year:2022 number:1 day:29 month:01 pages:11-21 https://dx.doi.org/10.1007/s40502-021-00641-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_120 GBV_ILN_281 AR 27 2022 1 29 01 11-21 |
spelling |
10.1007/s40502-021-00641-w doi (DE-627)SPR04649667X (SPR)s40502-021-00641-w-e DE-627 ger DE-627 rakwb eng Sundaramoorthy, Mohan verfasserin aut Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Society for Plant Physiology 2022 Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. Rice (dpeaa)DE-He213 Population structure (dpeaa)DE-He213 Grain yield (dpeaa)DE-He213 Association mapping (dpeaa)DE-He213 Ramasamy, Shobica Priya aut Rajagopalan, Veera Ranjani aut Ramalingam, Ajay Prasanth aut Ayyenar, Bharathi aut Mohanavel, Vignesh aut Narayanan, Manikanda Boopathi aut Muthurajan, Raveendran (orcid)0000-0002-8803-7662 aut Enthalten in Indian journal of plant physiology New Delhi, 2000 27(2022), 1 vom: 29. Jan., Seite 11-21 (DE-627)670213330 (DE-600)2632084-8 0974-0252 nnns volume:27 year:2022 number:1 day:29 month:01 pages:11-21 https://dx.doi.org/10.1007/s40502-021-00641-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_120 GBV_ILN_281 AR 27 2022 1 29 01 11-21 |
allfields_unstemmed |
10.1007/s40502-021-00641-w doi (DE-627)SPR04649667X (SPR)s40502-021-00641-w-e DE-627 ger DE-627 rakwb eng Sundaramoorthy, Mohan verfasserin aut Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Society for Plant Physiology 2022 Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. Rice (dpeaa)DE-He213 Population structure (dpeaa)DE-He213 Grain yield (dpeaa)DE-He213 Association mapping (dpeaa)DE-He213 Ramasamy, Shobica Priya aut Rajagopalan, Veera Ranjani aut Ramalingam, Ajay Prasanth aut Ayyenar, Bharathi aut Mohanavel, Vignesh aut Narayanan, Manikanda Boopathi aut Muthurajan, Raveendran (orcid)0000-0002-8803-7662 aut Enthalten in Indian journal of plant physiology New Delhi, 2000 27(2022), 1 vom: 29. Jan., Seite 11-21 (DE-627)670213330 (DE-600)2632084-8 0974-0252 nnns volume:27 year:2022 number:1 day:29 month:01 pages:11-21 https://dx.doi.org/10.1007/s40502-021-00641-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_120 GBV_ILN_281 AR 27 2022 1 29 01 11-21 |
allfieldsGer |
10.1007/s40502-021-00641-w doi (DE-627)SPR04649667X (SPR)s40502-021-00641-w-e DE-627 ger DE-627 rakwb eng Sundaramoorthy, Mohan verfasserin aut Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Society for Plant Physiology 2022 Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. Rice (dpeaa)DE-He213 Population structure (dpeaa)DE-He213 Grain yield (dpeaa)DE-He213 Association mapping (dpeaa)DE-He213 Ramasamy, Shobica Priya aut Rajagopalan, Veera Ranjani aut Ramalingam, Ajay Prasanth aut Ayyenar, Bharathi aut Mohanavel, Vignesh aut Narayanan, Manikanda Boopathi aut Muthurajan, Raveendran (orcid)0000-0002-8803-7662 aut Enthalten in Indian journal of plant physiology New Delhi, 2000 27(2022), 1 vom: 29. Jan., Seite 11-21 (DE-627)670213330 (DE-600)2632084-8 0974-0252 nnns volume:27 year:2022 number:1 day:29 month:01 pages:11-21 https://dx.doi.org/10.1007/s40502-021-00641-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_120 GBV_ILN_281 AR 27 2022 1 29 01 11-21 |
allfieldsSound |
10.1007/s40502-021-00641-w doi (DE-627)SPR04649667X (SPR)s40502-021-00641-w-e DE-627 ger DE-627 rakwb eng Sundaramoorthy, Mohan verfasserin aut Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Society for Plant Physiology 2022 Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. Rice (dpeaa)DE-He213 Population structure (dpeaa)DE-He213 Grain yield (dpeaa)DE-He213 Association mapping (dpeaa)DE-He213 Ramasamy, Shobica Priya aut Rajagopalan, Veera Ranjani aut Ramalingam, Ajay Prasanth aut Ayyenar, Bharathi aut Mohanavel, Vignesh aut Narayanan, Manikanda Boopathi aut Muthurajan, Raveendran (orcid)0000-0002-8803-7662 aut Enthalten in Indian journal of plant physiology New Delhi, 2000 27(2022), 1 vom: 29. Jan., Seite 11-21 (DE-627)670213330 (DE-600)2632084-8 0974-0252 nnns volume:27 year:2022 number:1 day:29 month:01 pages:11-21 https://dx.doi.org/10.1007/s40502-021-00641-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_120 GBV_ILN_281 AR 27 2022 1 29 01 11-21 |
language |
English |
source |
Enthalten in Indian journal of plant physiology 27(2022), 1 vom: 29. Jan., Seite 11-21 volume:27 year:2022 number:1 day:29 month:01 pages:11-21 |
sourceStr |
Enthalten in Indian journal of plant physiology 27(2022), 1 vom: 29. Jan., Seite 11-21 volume:27 year:2022 number:1 day:29 month:01 pages:11-21 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rice Population structure Grain yield Association mapping |
isfreeaccess_bool |
false |
container_title |
Indian journal of plant physiology |
authorswithroles_txt_mv |
Sundaramoorthy, Mohan @@aut@@ Ramasamy, Shobica Priya @@aut@@ Rajagopalan, Veera Ranjani @@aut@@ Ramalingam, Ajay Prasanth @@aut@@ Ayyenar, Bharathi @@aut@@ Mohanavel, Vignesh @@aut@@ Narayanan, Manikanda Boopathi @@aut@@ Muthurajan, Raveendran @@aut@@ |
publishDateDaySort_date |
2022-01-29T00:00:00Z |
hierarchy_top_id |
670213330 |
id |
SPR04649667X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04649667X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507132504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220316s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40502-021-00641-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04649667X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40502-021-00641-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sundaramoorthy, Mohan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Society for Plant Physiology 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rice</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grain yield</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Association mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramasamy, Shobica Priya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajagopalan, Veera Ranjani</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramalingam, Ajay Prasanth</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayyenar, Bharathi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohanavel, Vignesh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Narayanan, Manikanda Boopathi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muthurajan, Raveendran</subfield><subfield code="0">(orcid)0000-0002-8803-7662</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Indian journal of plant physiology</subfield><subfield code="d">New Delhi, 2000</subfield><subfield code="g">27(2022), 1 vom: 29. Jan., Seite 11-21</subfield><subfield code="w">(DE-627)670213330</subfield><subfield code="w">(DE-600)2632084-8</subfield><subfield code="x">0974-0252</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:11-21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40502-021-00641-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">11-21</subfield></datafield></record></collection>
|
author |
Sundaramoorthy, Mohan |
spellingShingle |
Sundaramoorthy, Mohan misc Rice misc Population structure misc Grain yield misc Association mapping Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice |
authorStr |
Sundaramoorthy, Mohan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)670213330 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0974-0252 |
topic_title |
Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice Rice (dpeaa)DE-He213 Population structure (dpeaa)DE-He213 Grain yield (dpeaa)DE-He213 Association mapping (dpeaa)DE-He213 |
topic |
misc Rice misc Population structure misc Grain yield misc Association mapping |
topic_unstemmed |
misc Rice misc Population structure misc Grain yield misc Association mapping |
topic_browse |
misc Rice misc Population structure misc Grain yield misc Association mapping |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Indian journal of plant physiology |
hierarchy_parent_id |
670213330 |
hierarchy_top_title |
Indian journal of plant physiology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)670213330 (DE-600)2632084-8 |
title |
Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice |
ctrlnum |
(DE-627)SPR04649667X (SPR)s40502-021-00641-w-e |
title_full |
Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice |
author_sort |
Sundaramoorthy, Mohan |
journal |
Indian journal of plant physiology |
journalStr |
Indian journal of plant physiology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Sundaramoorthy, Mohan Ramasamy, Shobica Priya Rajagopalan, Veera Ranjani Ramalingam, Ajay Prasanth Ayyenar, Bharathi Mohanavel, Vignesh Narayanan, Manikanda Boopathi Muthurajan, Raveendran |
container_volume |
27 |
format_se |
Elektronische Aufsätze |
author-letter |
Sundaramoorthy, Mohan |
doi_str_mv |
10.1007/s40502-021-00641-w |
normlink |
(ORCID)0000-0002-8803-7662 |
normlink_prefix_str_mv |
(orcid)0000-0002-8803-7662 |
title_sort |
pilot scale genome wide association mapping identified novel loci for grain yield traits in rice |
title_auth |
Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice |
abstract |
Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. © Indian Society for Plant Physiology 2022 |
abstractGer |
Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. © Indian Society for Plant Physiology 2022 |
abstract_unstemmed |
Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding. © Indian Society for Plant Physiology 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_120 GBV_ILN_281 |
container_issue |
1 |
title_short |
Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice |
url |
https://dx.doi.org/10.1007/s40502-021-00641-w |
remote_bool |
true |
author2 |
Ramasamy, Shobica Priya Rajagopalan, Veera Ranjani Ramalingam, Ajay Prasanth Ayyenar, Bharathi Mohanavel, Vignesh Narayanan, Manikanda Boopathi Muthurajan, Raveendran |
author2Str |
Ramasamy, Shobica Priya Rajagopalan, Veera Ranjani Ramalingam, Ajay Prasanth Ayyenar, Bharathi Mohanavel, Vignesh Narayanan, Manikanda Boopathi Muthurajan, Raveendran |
ppnlink |
670213330 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40502-021-00641-w |
up_date |
2024-07-03T22:53:42.055Z |
_version_ |
1803600235916689408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04649667X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507132504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220316s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40502-021-00641-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04649667X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40502-021-00641-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sundaramoorthy, Mohan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Society for Plant Physiology 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Success of crop improvement program depends on systematic exploitation of genetic diversity. Improved understanding on the genetic basis of traits contributing to yield and stress tolerance is necessary to accelerate development of resilient crop varieties. In this study, a subset of 102 diverse rice accessions was assembled after analysing population structure (K = 8) and removal of admixtures from a larger set of IRRI 3 K panel. The constructed subset showed adequate diversity in yield related traits. Genome wide association analysis using the genome wide SNP markers identified a total of 42 SNPs showing significant association with major yield traits. Out of the identified SNPs, 20 SNPs were found to be present in QTL or genes reported previously for yield traits. Remaining 22 loci were found to be novel and needs validation. Elite genetic stocks with increased yield potential will permit us to dissect out the physiological and molecular basis of spikelet number per panicle in rice and thereby accelerate yield enhancement in rice through haplotype based breeding.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rice</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grain yield</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Association mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramasamy, Shobica Priya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajagopalan, Veera Ranjani</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramalingam, Ajay Prasanth</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayyenar, Bharathi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohanavel, Vignesh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Narayanan, Manikanda Boopathi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muthurajan, Raveendran</subfield><subfield code="0">(orcid)0000-0002-8803-7662</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Indian journal of plant physiology</subfield><subfield code="d">New Delhi, 2000</subfield><subfield code="g">27(2022), 1 vom: 29. Jan., Seite 11-21</subfield><subfield code="w">(DE-627)670213330</subfield><subfield code="w">(DE-600)2632084-8</subfield><subfield code="x">0974-0252</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:11-21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40502-021-00641-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">11-21</subfield></datafield></record></collection>
|
score |
7.400529 |