O2D: An uncooperative taxi-passenger’s destination predication system via deep neural networks

Abstract Predicting passenger’s destination with the partial GPS trajectory is a challenging yet meaningful issue in the taxi industry. Existing destination prediction studies mainly focus on the trajectory data mining algorithms. Moreover, most of them are still unsuitable to be directly applied in...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Xingchen [verfasserIn]

Liao, Chengwu

Chen, Chao

Ma, Jie

Pu, Huayan

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Trajectory data mining

Destination prediction

Green edge computing

Deep neural networks

Energy efficiency

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Übergeordnetes Werk:

Enthalten in: Peer-to-peer networking and applications - New York, NY : Springer, 2008, 15(2021), 2 vom: 19. Okt., Seite 870-883

Übergeordnetes Werk:

volume:15 ; year:2021 ; number:2 ; day:19 ; month:10 ; pages:870-883

Links:

Volltext

DOI / URN:

10.1007/s12083-021-01247-7

Katalog-ID:

SPR046503897

Nicht das Richtige dabei?

Schreiben Sie uns!