On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications
Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence t...
Ausführliche Beschreibung
Autor*in: |
Yatakoat, Pornsak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in difference equations - [S.l.] : Springer International, 2004, 2022(2022), 1 vom: 17. März |
---|---|
Übergeordnetes Werk: |
volume:2022 ; year:2022 ; number:1 ; day:17 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s13662-022-03698-5 |
---|
Katalog-ID: |
SPR046518622 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046518622 | ||
003 | DE-627 | ||
005 | 20230507133518.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220318s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13662-022-03698-5 |2 doi | |
035 | |a (DE-627)SPR046518622 | ||
035 | |a (SPR)s13662-022-03698-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Yatakoat, Pornsak |e verfasserin |4 aut | |
245 | 1 | 0 | |a On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. | ||
650 | 4 | |a Convex minimization problems |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fixed points |7 (dpeaa)DE-He213 | |
650 | 4 | |a Forward–backward algorithms |7 (dpeaa)DE-He213 | |
650 | 4 | |a Image restoration problems |7 (dpeaa)DE-He213 | |
700 | 1 | |a Suantai, Suthep |4 aut | |
700 | 1 | |a Hanjing, Adisak |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in difference equations |d [S.l.] : Springer International, 2004 |g 2022(2022), 1 vom: 17. März |w (DE-627)377755699 |w (DE-600)2132815-8 |x 1687-1847 |7 nnns |
773 | 1 | 8 | |g volume:2022 |g year:2022 |g number:1 |g day:17 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13662-022-03698-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4305 | ||
951 | |a AR | ||
952 | |d 2022 |j 2022 |e 1 |b 17 |c 03 |
author_variant |
p y py s s ss a h ah |
---|---|
matchkey_str |
article:16871847:2022----::noeceeaeotmztoagrtmbsdniepitnlnsactcnqefrovxii |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13662-022-03698-5 doi (DE-627)SPR046518622 (SPR)s13662-022-03698-5-e DE-627 ger DE-627 rakwb eng Yatakoat, Pornsak verfasserin aut On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. Convex minimization problems (dpeaa)DE-He213 Fixed points (dpeaa)DE-He213 Forward–backward algorithms (dpeaa)DE-He213 Image restoration problems (dpeaa)DE-He213 Suantai, Suthep aut Hanjing, Adisak aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 17. März (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:17 month:03 https://dx.doi.org/10.1186/s13662-022-03698-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 17 03 |
spelling |
10.1186/s13662-022-03698-5 doi (DE-627)SPR046518622 (SPR)s13662-022-03698-5-e DE-627 ger DE-627 rakwb eng Yatakoat, Pornsak verfasserin aut On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. Convex minimization problems (dpeaa)DE-He213 Fixed points (dpeaa)DE-He213 Forward–backward algorithms (dpeaa)DE-He213 Image restoration problems (dpeaa)DE-He213 Suantai, Suthep aut Hanjing, Adisak aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 17. März (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:17 month:03 https://dx.doi.org/10.1186/s13662-022-03698-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 17 03 |
allfields_unstemmed |
10.1186/s13662-022-03698-5 doi (DE-627)SPR046518622 (SPR)s13662-022-03698-5-e DE-627 ger DE-627 rakwb eng Yatakoat, Pornsak verfasserin aut On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. Convex minimization problems (dpeaa)DE-He213 Fixed points (dpeaa)DE-He213 Forward–backward algorithms (dpeaa)DE-He213 Image restoration problems (dpeaa)DE-He213 Suantai, Suthep aut Hanjing, Adisak aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 17. März (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:17 month:03 https://dx.doi.org/10.1186/s13662-022-03698-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 17 03 |
allfieldsGer |
10.1186/s13662-022-03698-5 doi (DE-627)SPR046518622 (SPR)s13662-022-03698-5-e DE-627 ger DE-627 rakwb eng Yatakoat, Pornsak verfasserin aut On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. Convex minimization problems (dpeaa)DE-He213 Fixed points (dpeaa)DE-He213 Forward–backward algorithms (dpeaa)DE-He213 Image restoration problems (dpeaa)DE-He213 Suantai, Suthep aut Hanjing, Adisak aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 17. März (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:17 month:03 https://dx.doi.org/10.1186/s13662-022-03698-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 17 03 |
allfieldsSound |
10.1186/s13662-022-03698-5 doi (DE-627)SPR046518622 (SPR)s13662-022-03698-5-e DE-627 ger DE-627 rakwb eng Yatakoat, Pornsak verfasserin aut On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. Convex minimization problems (dpeaa)DE-He213 Fixed points (dpeaa)DE-He213 Forward–backward algorithms (dpeaa)DE-He213 Image restoration problems (dpeaa)DE-He213 Suantai, Suthep aut Hanjing, Adisak aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2022(2022), 1 vom: 17. März (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2022 year:2022 number:1 day:17 month:03 https://dx.doi.org/10.1186/s13662-022-03698-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 AR 2022 2022 1 17 03 |
language |
English |
source |
Enthalten in Advances in difference equations 2022(2022), 1 vom: 17. März volume:2022 year:2022 number:1 day:17 month:03 |
sourceStr |
Enthalten in Advances in difference equations 2022(2022), 1 vom: 17. März volume:2022 year:2022 number:1 day:17 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Convex minimization problems Fixed points Forward–backward algorithms Image restoration problems |
isfreeaccess_bool |
true |
container_title |
Advances in difference equations |
authorswithroles_txt_mv |
Yatakoat, Pornsak @@aut@@ Suantai, Suthep @@aut@@ Hanjing, Adisak @@aut@@ |
publishDateDaySort_date |
2022-03-17T00:00:00Z |
hierarchy_top_id |
377755699 |
id |
SPR046518622 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046518622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507133518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220318s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-022-03698-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046518622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-022-03698-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yatakoat, Pornsak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex minimization problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed points</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forward–backward algorithms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image restoration problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suantai, Suthep</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanjing, Adisak</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2022(2022), 1 vom: 17. März</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2022</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-022-03698-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2022</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Yatakoat, Pornsak |
spellingShingle |
Yatakoat, Pornsak misc Convex minimization problems misc Fixed points misc Forward–backward algorithms misc Image restoration problems On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications |
authorStr |
Yatakoat, Pornsak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377755699 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-1847 |
topic_title |
On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications Convex minimization problems (dpeaa)DE-He213 Fixed points (dpeaa)DE-He213 Forward–backward algorithms (dpeaa)DE-He213 Image restoration problems (dpeaa)DE-He213 |
topic |
misc Convex minimization problems misc Fixed points misc Forward–backward algorithms misc Image restoration problems |
topic_unstemmed |
misc Convex minimization problems misc Fixed points misc Forward–backward algorithms misc Image restoration problems |
topic_browse |
misc Convex minimization problems misc Fixed points misc Forward–backward algorithms misc Image restoration problems |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in difference equations |
hierarchy_parent_id |
377755699 |
hierarchy_top_title |
Advances in difference equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377755699 (DE-600)2132815-8 |
title |
On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications |
ctrlnum |
(DE-627)SPR046518622 (SPR)s13662-022-03698-5-e |
title_full |
On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications |
author_sort |
Yatakoat, Pornsak |
journal |
Advances in difference equations |
journalStr |
Advances in difference equations |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yatakoat, Pornsak Suantai, Suthep Hanjing, Adisak |
container_volume |
2022 |
format_se |
Elektronische Aufsätze |
author-letter |
Yatakoat, Pornsak |
doi_str_mv |
10.1186/s13662-022-03698-5 |
title_sort |
on some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications |
title_auth |
On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications |
abstract |
Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. © The Author(s) 2022 |
abstractGer |
Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. © The Author(s) 2022 |
abstract_unstemmed |
Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_206 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4305 |
container_issue |
1 |
title_short |
On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications |
url |
https://dx.doi.org/10.1186/s13662-022-03698-5 |
remote_bool |
true |
author2 |
Suantai, Suthep Hanjing, Adisak |
author2Str |
Suantai, Suthep Hanjing, Adisak |
ppnlink |
377755699 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13662-022-03698-5 |
up_date |
2024-07-03T23:01:26.842Z |
_version_ |
1803600723280134144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046518622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507133518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220318s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-022-03698-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046518622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-022-03698-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yatakoat, Pornsak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On some accelerated optimization algorithms based on fixed point and linesearch techniques for convex minimization problems with applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we introduce and study a new accelerated algorithm based on forward–backward and SP-algorithm for solving a convex minimization problem of the sum of two convex and lower semicontinuous functions in a Hilbert space. Under some suitable control conditions, a weak convergence theorem of the proposed algorithm based on a fixed point is established. Moreover, we choose the stepsize of our algorithm which is independent on the Lipschitz constant of the gradient of the objective function by using a linesearch technique, and then a weak convergence result of the proposed algorithm is analyzed. As applications, we apply the proposed algorithm for solving the image restoration problems and compare its convergence behavior with other well-known algorithms in the literature. By our experiment, the algorithms have a higher efficiency than the others.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex minimization problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed points</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forward–backward algorithms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image restoration problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suantai, Suthep</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanjing, Adisak</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2022(2022), 1 vom: 17. März</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2022</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-022-03698-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2022</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.400504 |