Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction
Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small l...
Ausführliche Beschreibung
Autor*in: |
Xu, Lei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: EJNMMI Physics - Berlin : SpringerOpen, 2014, 9(2022), 1 vom: 26. März |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:1 ; day:26 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s40658-022-00451-5 |
---|
Katalog-ID: |
SPR046624740 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046624740 | ||
003 | DE-627 | ||
005 | 20230507143521.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220330s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40658-022-00451-5 |2 doi | |
035 | |a (DE-627)SPR046624740 | ||
035 | |a (SPR)s40658-022-00451-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Xu, Lei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. | ||
650 | 4 | |a FDG |7 (dpeaa)DE-He213 | |
650 | 4 | |a PET |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lung nodule |7 (dpeaa)DE-He213 | |
650 | 4 | |a Small voxel reconstruction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bayesian penalized likelihood reconstruction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Small lesion detection |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Ru-Shuai |4 aut | |
700 | 1 | |a Wu, Run-Ze |0 (orcid)0000-0003-0445-9460 |4 aut | |
700 | 1 | |a Yang, Rui |4 aut | |
700 | 1 | |a You, Qin-Qin |4 aut | |
700 | 1 | |a Yao, Xiao-Chen |4 aut | |
700 | 1 | |a Xie, Hui-Fang |4 aut | |
700 | 1 | |a Lv, Yang |4 aut | |
700 | 1 | |a Dong, Yun |4 aut | |
700 | 1 | |a Wang, Feng |4 aut | |
700 | 1 | |a Meng, Qing-Le |4 aut | |
773 | 0 | 8 | |i Enthalten in |t EJNMMI Physics |d Berlin : SpringerOpen, 2014 |g 9(2022), 1 vom: 26. März |w (DE-627)785697993 |w (DE-600)2768912-8 |x 2197-7364 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:1 |g day:26 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40658-022-00451-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 1 |b 26 |c 03 |
author_variant |
l x lx r s l rsl r z w rzw r y ry q q y qqy x c y xcy h f x hfx y l yl y d yd f w fw q l m qlm |
---|---|
matchkey_str |
article:21977364:2022----::mllsodpcinnqatfctoacrcooclgcl8fgecwtsaloeadaei |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s40658-022-00451-5 doi (DE-627)SPR046624740 (SPR)s40658-022-00451-5-e DE-627 ger DE-627 rakwb eng Xu, Lei verfasserin aut Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. FDG (dpeaa)DE-He213 PET (dpeaa)DE-He213 Lung nodule (dpeaa)DE-He213 Small voxel reconstruction (dpeaa)DE-He213 Bayesian penalized likelihood reconstruction (dpeaa)DE-He213 Small lesion detection (dpeaa)DE-He213 Li, Ru-Shuai aut Wu, Run-Ze (orcid)0000-0003-0445-9460 aut Yang, Rui aut You, Qin-Qin aut Yao, Xiao-Chen aut Xie, Hui-Fang aut Lv, Yang aut Dong, Yun aut Wang, Feng aut Meng, Qing-Le aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 26. März (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:26 month:03 https://dx.doi.org/10.1186/s40658-022-00451-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 26 03 |
spelling |
10.1186/s40658-022-00451-5 doi (DE-627)SPR046624740 (SPR)s40658-022-00451-5-e DE-627 ger DE-627 rakwb eng Xu, Lei verfasserin aut Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. FDG (dpeaa)DE-He213 PET (dpeaa)DE-He213 Lung nodule (dpeaa)DE-He213 Small voxel reconstruction (dpeaa)DE-He213 Bayesian penalized likelihood reconstruction (dpeaa)DE-He213 Small lesion detection (dpeaa)DE-He213 Li, Ru-Shuai aut Wu, Run-Ze (orcid)0000-0003-0445-9460 aut Yang, Rui aut You, Qin-Qin aut Yao, Xiao-Chen aut Xie, Hui-Fang aut Lv, Yang aut Dong, Yun aut Wang, Feng aut Meng, Qing-Le aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 26. März (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:26 month:03 https://dx.doi.org/10.1186/s40658-022-00451-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 26 03 |
allfields_unstemmed |
10.1186/s40658-022-00451-5 doi (DE-627)SPR046624740 (SPR)s40658-022-00451-5-e DE-627 ger DE-627 rakwb eng Xu, Lei verfasserin aut Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. FDG (dpeaa)DE-He213 PET (dpeaa)DE-He213 Lung nodule (dpeaa)DE-He213 Small voxel reconstruction (dpeaa)DE-He213 Bayesian penalized likelihood reconstruction (dpeaa)DE-He213 Small lesion detection (dpeaa)DE-He213 Li, Ru-Shuai aut Wu, Run-Ze (orcid)0000-0003-0445-9460 aut Yang, Rui aut You, Qin-Qin aut Yao, Xiao-Chen aut Xie, Hui-Fang aut Lv, Yang aut Dong, Yun aut Wang, Feng aut Meng, Qing-Le aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 26. März (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:26 month:03 https://dx.doi.org/10.1186/s40658-022-00451-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 26 03 |
allfieldsGer |
10.1186/s40658-022-00451-5 doi (DE-627)SPR046624740 (SPR)s40658-022-00451-5-e DE-627 ger DE-627 rakwb eng Xu, Lei verfasserin aut Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. FDG (dpeaa)DE-He213 PET (dpeaa)DE-He213 Lung nodule (dpeaa)DE-He213 Small voxel reconstruction (dpeaa)DE-He213 Bayesian penalized likelihood reconstruction (dpeaa)DE-He213 Small lesion detection (dpeaa)DE-He213 Li, Ru-Shuai aut Wu, Run-Ze (orcid)0000-0003-0445-9460 aut Yang, Rui aut You, Qin-Qin aut Yao, Xiao-Chen aut Xie, Hui-Fang aut Lv, Yang aut Dong, Yun aut Wang, Feng aut Meng, Qing-Le aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 26. März (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:26 month:03 https://dx.doi.org/10.1186/s40658-022-00451-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 26 03 |
allfieldsSound |
10.1186/s40658-022-00451-5 doi (DE-627)SPR046624740 (SPR)s40658-022-00451-5-e DE-627 ger DE-627 rakwb eng Xu, Lei verfasserin aut Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. FDG (dpeaa)DE-He213 PET (dpeaa)DE-He213 Lung nodule (dpeaa)DE-He213 Small voxel reconstruction (dpeaa)DE-He213 Bayesian penalized likelihood reconstruction (dpeaa)DE-He213 Small lesion detection (dpeaa)DE-He213 Li, Ru-Shuai aut Wu, Run-Ze (orcid)0000-0003-0445-9460 aut Yang, Rui aut You, Qin-Qin aut Yao, Xiao-Chen aut Xie, Hui-Fang aut Lv, Yang aut Dong, Yun aut Wang, Feng aut Meng, Qing-Le aut Enthalten in EJNMMI Physics Berlin : SpringerOpen, 2014 9(2022), 1 vom: 26. März (DE-627)785697993 (DE-600)2768912-8 2197-7364 nnns volume:9 year:2022 number:1 day:26 month:03 https://dx.doi.org/10.1186/s40658-022-00451-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 26 03 |
language |
English |
source |
Enthalten in EJNMMI Physics 9(2022), 1 vom: 26. März volume:9 year:2022 number:1 day:26 month:03 |
sourceStr |
Enthalten in EJNMMI Physics 9(2022), 1 vom: 26. März volume:9 year:2022 number:1 day:26 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
FDG PET Lung nodule Small voxel reconstruction Bayesian penalized likelihood reconstruction Small lesion detection |
isfreeaccess_bool |
true |
container_title |
EJNMMI Physics |
authorswithroles_txt_mv |
Xu, Lei @@aut@@ Li, Ru-Shuai @@aut@@ Wu, Run-Ze @@aut@@ Yang, Rui @@aut@@ You, Qin-Qin @@aut@@ Yao, Xiao-Chen @@aut@@ Xie, Hui-Fang @@aut@@ Lv, Yang @@aut@@ Dong, Yun @@aut@@ Wang, Feng @@aut@@ Meng, Qing-Le @@aut@@ |
publishDateDaySort_date |
2022-03-26T00:00:00Z |
hierarchy_top_id |
785697993 |
id |
SPR046624740 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046624740</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507143521.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220330s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40658-022-00451-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046624740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40658-022-00451-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FDG</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lung nodule</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small voxel reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian penalized likelihood reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small lesion detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ru-Shuai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Run-Ze</subfield><subfield code="0">(orcid)0000-0003-0445-9460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">You, Qin-Qin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Xiao-Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Hui-Fang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Yun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Qing-Le</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EJNMMI Physics</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">9(2022), 1 vom: 26. März</subfield><subfield code="w">(DE-627)785697993</subfield><subfield code="w">(DE-600)2768912-8</subfield><subfield code="x">2197-7364</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40658-022-00451-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Xu, Lei |
spellingShingle |
Xu, Lei misc FDG misc PET misc Lung nodule misc Small voxel reconstruction misc Bayesian penalized likelihood reconstruction misc Small lesion detection Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction |
authorStr |
Xu, Lei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)785697993 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2197-7364 |
topic_title |
Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction FDG (dpeaa)DE-He213 PET (dpeaa)DE-He213 Lung nodule (dpeaa)DE-He213 Small voxel reconstruction (dpeaa)DE-He213 Bayesian penalized likelihood reconstruction (dpeaa)DE-He213 Small lesion detection (dpeaa)DE-He213 |
topic |
misc FDG misc PET misc Lung nodule misc Small voxel reconstruction misc Bayesian penalized likelihood reconstruction misc Small lesion detection |
topic_unstemmed |
misc FDG misc PET misc Lung nodule misc Small voxel reconstruction misc Bayesian penalized likelihood reconstruction misc Small lesion detection |
topic_browse |
misc FDG misc PET misc Lung nodule misc Small voxel reconstruction misc Bayesian penalized likelihood reconstruction misc Small lesion detection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EJNMMI Physics |
hierarchy_parent_id |
785697993 |
hierarchy_top_title |
EJNMMI Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)785697993 (DE-600)2768912-8 |
title |
Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction |
ctrlnum |
(DE-627)SPR046624740 (SPR)s40658-022-00451-5-e |
title_full |
Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction |
author_sort |
Xu, Lei |
journal |
EJNMMI Physics |
journalStr |
EJNMMI Physics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Xu, Lei Li, Ru-Shuai Wu, Run-Ze Yang, Rui You, Qin-Qin Yao, Xiao-Chen Xie, Hui-Fang Lv, Yang Dong, Yun Wang, Feng Meng, Qing-Le |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Lei |
doi_str_mv |
10.1186/s40658-022-00451-5 |
normlink |
(ORCID)0000-0003-0445-9460 |
normlink_prefix_str_mv |
(orcid)0000-0003-0445-9460 |
title_sort |
small lesion depiction and quantification accuracy of oncological 18f-fdg pet/ct with small voxel and bayesian penalized likelihood reconstruction |
title_auth |
Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction |
abstract |
Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. © The Author(s) 2022 |
abstractGer |
Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. © The Author(s) 2022 |
abstract_unstemmed |
Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2446 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction |
url |
https://dx.doi.org/10.1186/s40658-022-00451-5 |
remote_bool |
true |
author2 |
Li, Ru-Shuai Wu, Run-Ze Yang, Rui You, Qin-Qin Yao, Xiao-Chen Xie, Hui-Fang Lv, Yang Dong, Yun Wang, Feng Meng, Qing-Le |
author2Str |
Li, Ru-Shuai Wu, Run-Ze Yang, Rui You, Qin-Qin Yao, Xiao-Chen Xie, Hui-Fang Lv, Yang Dong, Yun Wang, Feng Meng, Qing-Le |
ppnlink |
785697993 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40658-022-00451-5 |
up_date |
2024-07-03T23:36:13.530Z |
_version_ |
1803602911334236160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046624740</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507143521.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220330s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40658-022-00451-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046624740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40658-022-00451-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 $ mm^{3} $. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The $ SUV_{max} $, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the $ SUV_{max} $, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FDG</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lung nodule</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small voxel reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian penalized likelihood reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small lesion detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ru-Shuai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Run-Ze</subfield><subfield code="0">(orcid)0000-0003-0445-9460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">You, Qin-Qin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Xiao-Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Hui-Fang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Yun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Qing-Le</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EJNMMI Physics</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">9(2022), 1 vom: 26. März</subfield><subfield code="w">(DE-627)785697993</subfield><subfield code="w">(DE-600)2768912-8</subfield><subfield code="x">2197-7364</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40658-022-00451-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.400943 |