Feasibility Assessment of Stiff Seismic Base Absorbers
Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency...
Ausführliche Beschreibung
Autor*in: |
Kapasakalis, Konstantinos A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Krishtel eMaging Solutions Private Limited 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of vibration engineering & technologies - Singapore : Springer Singapore, 2018, 10(2021), 1 vom: 09. Aug., Seite 37-53 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:1 ; day:09 ; month:08 ; pages:37-53 |
Links: |
---|
DOI / URN: |
10.1007/s42417-021-00362-2 |
---|
Katalog-ID: |
SPR04662578X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04662578X | ||
003 | DE-627 | ||
005 | 20230507143525.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220330s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42417-021-00362-2 |2 doi | |
035 | |a (DE-627)SPR04662578X | ||
035 | |a (SPR)s42417-021-00362-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kapasakalis, Konstantinos A. |e verfasserin |0 (orcid)0000-0002-6619-7374 |4 aut | |
245 | 1 | 0 | |a Feasibility Assessment of Stiff Seismic Base Absorbers |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Krishtel eMaging Solutions Private Limited 2021 | ||
520 | |a Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. | ||
650 | 4 | |a Seismic protection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Negative stiffness |7 (dpeaa)DE-He213 | |
650 | 4 | |a Damping |7 (dpeaa)DE-He213 | |
650 | 4 | |a KDamper |7 (dpeaa)DE-He213 | |
650 | 4 | |a Inerter |7 (dpeaa)DE-He213 | |
650 | 4 | |a Seismic Base Absorbers (SBA) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Antoniadis, Ioannis A. |4 aut | |
700 | 1 | |a Sapountzakis, Evangelos J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of vibration engineering & technologies |d Singapore : Springer Singapore, 2018 |g 10(2021), 1 vom: 09. Aug., Seite 37-53 |w (DE-627)1030123837 |w (DE-600)2941414-3 |x 2523-3939 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:1 |g day:09 |g month:08 |g pages:37-53 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42417-021-00362-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 1 |b 09 |c 08 |h 37-53 |
author_variant |
k a k ka kak i a a ia iaa e j s ej ejs |
---|---|
matchkey_str |
article:25233939:2021----::esbltassmnosifesib |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s42417-021-00362-2 doi (DE-627)SPR04662578X (SPR)s42417-021-00362-2-e DE-627 ger DE-627 rakwb eng Kapasakalis, Konstantinos A. verfasserin (orcid)0000-0002-6619-7374 aut Feasibility Assessment of Stiff Seismic Base Absorbers 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Krishtel eMaging Solutions Private Limited 2021 Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. Seismic protection (dpeaa)DE-He213 Negative stiffness (dpeaa)DE-He213 Damping (dpeaa)DE-He213 KDamper (dpeaa)DE-He213 Inerter (dpeaa)DE-He213 Seismic Base Absorbers (SBA) (dpeaa)DE-He213 Antoniadis, Ioannis A. aut Sapountzakis, Evangelos J. aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 10(2021), 1 vom: 09. Aug., Seite 37-53 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:10 year:2021 number:1 day:09 month:08 pages:37-53 https://dx.doi.org/10.1007/s42417-021-00362-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2021 1 09 08 37-53 |
spelling |
10.1007/s42417-021-00362-2 doi (DE-627)SPR04662578X (SPR)s42417-021-00362-2-e DE-627 ger DE-627 rakwb eng Kapasakalis, Konstantinos A. verfasserin (orcid)0000-0002-6619-7374 aut Feasibility Assessment of Stiff Seismic Base Absorbers 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Krishtel eMaging Solutions Private Limited 2021 Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. Seismic protection (dpeaa)DE-He213 Negative stiffness (dpeaa)DE-He213 Damping (dpeaa)DE-He213 KDamper (dpeaa)DE-He213 Inerter (dpeaa)DE-He213 Seismic Base Absorbers (SBA) (dpeaa)DE-He213 Antoniadis, Ioannis A. aut Sapountzakis, Evangelos J. aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 10(2021), 1 vom: 09. Aug., Seite 37-53 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:10 year:2021 number:1 day:09 month:08 pages:37-53 https://dx.doi.org/10.1007/s42417-021-00362-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2021 1 09 08 37-53 |
allfields_unstemmed |
10.1007/s42417-021-00362-2 doi (DE-627)SPR04662578X (SPR)s42417-021-00362-2-e DE-627 ger DE-627 rakwb eng Kapasakalis, Konstantinos A. verfasserin (orcid)0000-0002-6619-7374 aut Feasibility Assessment of Stiff Seismic Base Absorbers 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Krishtel eMaging Solutions Private Limited 2021 Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. Seismic protection (dpeaa)DE-He213 Negative stiffness (dpeaa)DE-He213 Damping (dpeaa)DE-He213 KDamper (dpeaa)DE-He213 Inerter (dpeaa)DE-He213 Seismic Base Absorbers (SBA) (dpeaa)DE-He213 Antoniadis, Ioannis A. aut Sapountzakis, Evangelos J. aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 10(2021), 1 vom: 09. Aug., Seite 37-53 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:10 year:2021 number:1 day:09 month:08 pages:37-53 https://dx.doi.org/10.1007/s42417-021-00362-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2021 1 09 08 37-53 |
allfieldsGer |
10.1007/s42417-021-00362-2 doi (DE-627)SPR04662578X (SPR)s42417-021-00362-2-e DE-627 ger DE-627 rakwb eng Kapasakalis, Konstantinos A. verfasserin (orcid)0000-0002-6619-7374 aut Feasibility Assessment of Stiff Seismic Base Absorbers 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Krishtel eMaging Solutions Private Limited 2021 Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. Seismic protection (dpeaa)DE-He213 Negative stiffness (dpeaa)DE-He213 Damping (dpeaa)DE-He213 KDamper (dpeaa)DE-He213 Inerter (dpeaa)DE-He213 Seismic Base Absorbers (SBA) (dpeaa)DE-He213 Antoniadis, Ioannis A. aut Sapountzakis, Evangelos J. aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 10(2021), 1 vom: 09. Aug., Seite 37-53 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:10 year:2021 number:1 day:09 month:08 pages:37-53 https://dx.doi.org/10.1007/s42417-021-00362-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2021 1 09 08 37-53 |
allfieldsSound |
10.1007/s42417-021-00362-2 doi (DE-627)SPR04662578X (SPR)s42417-021-00362-2-e DE-627 ger DE-627 rakwb eng Kapasakalis, Konstantinos A. verfasserin (orcid)0000-0002-6619-7374 aut Feasibility Assessment of Stiff Seismic Base Absorbers 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Krishtel eMaging Solutions Private Limited 2021 Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. Seismic protection (dpeaa)DE-He213 Negative stiffness (dpeaa)DE-He213 Damping (dpeaa)DE-He213 KDamper (dpeaa)DE-He213 Inerter (dpeaa)DE-He213 Seismic Base Absorbers (SBA) (dpeaa)DE-He213 Antoniadis, Ioannis A. aut Sapountzakis, Evangelos J. aut Enthalten in Journal of vibration engineering & technologies Singapore : Springer Singapore, 2018 10(2021), 1 vom: 09. Aug., Seite 37-53 (DE-627)1030123837 (DE-600)2941414-3 2523-3939 nnns volume:10 year:2021 number:1 day:09 month:08 pages:37-53 https://dx.doi.org/10.1007/s42417-021-00362-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2021 1 09 08 37-53 |
language |
English |
source |
Enthalten in Journal of vibration engineering & technologies 10(2021), 1 vom: 09. Aug., Seite 37-53 volume:10 year:2021 number:1 day:09 month:08 pages:37-53 |
sourceStr |
Enthalten in Journal of vibration engineering & technologies 10(2021), 1 vom: 09. Aug., Seite 37-53 volume:10 year:2021 number:1 day:09 month:08 pages:37-53 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Seismic protection Negative stiffness Damping KDamper Inerter Seismic Base Absorbers (SBA) |
isfreeaccess_bool |
false |
container_title |
Journal of vibration engineering & technologies |
authorswithroles_txt_mv |
Kapasakalis, Konstantinos A. @@aut@@ Antoniadis, Ioannis A. @@aut@@ Sapountzakis, Evangelos J. @@aut@@ |
publishDateDaySort_date |
2021-08-09T00:00:00Z |
hierarchy_top_id |
1030123837 |
id |
SPR04662578X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04662578X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507143525.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220330s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42417-021-00362-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04662578X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42417-021-00362-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kapasakalis, Konstantinos A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6619-7374</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feasibility Assessment of Stiff Seismic Base Absorbers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Krishtel eMaging Solutions Private Limited 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic protection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative stiffness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KDamper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inerter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic Base Absorbers (SBA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antoniadis, Ioannis A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sapountzakis, Evangelos J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of vibration engineering & technologies</subfield><subfield code="d">Singapore : Springer Singapore, 2018</subfield><subfield code="g">10(2021), 1 vom: 09. Aug., Seite 37-53</subfield><subfield code="w">(DE-627)1030123837</subfield><subfield code="w">(DE-600)2941414-3</subfield><subfield code="x">2523-3939</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:37-53</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42417-021-00362-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield><subfield code="h">37-53</subfield></datafield></record></collection>
|
author |
Kapasakalis, Konstantinos A. |
spellingShingle |
Kapasakalis, Konstantinos A. misc Seismic protection misc Negative stiffness misc Damping misc KDamper misc Inerter misc Seismic Base Absorbers (SBA) Feasibility Assessment of Stiff Seismic Base Absorbers |
authorStr |
Kapasakalis, Konstantinos A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1030123837 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2523-3939 |
topic_title |
Feasibility Assessment of Stiff Seismic Base Absorbers Seismic protection (dpeaa)DE-He213 Negative stiffness (dpeaa)DE-He213 Damping (dpeaa)DE-He213 KDamper (dpeaa)DE-He213 Inerter (dpeaa)DE-He213 Seismic Base Absorbers (SBA) (dpeaa)DE-He213 |
topic |
misc Seismic protection misc Negative stiffness misc Damping misc KDamper misc Inerter misc Seismic Base Absorbers (SBA) |
topic_unstemmed |
misc Seismic protection misc Negative stiffness misc Damping misc KDamper misc Inerter misc Seismic Base Absorbers (SBA) |
topic_browse |
misc Seismic protection misc Negative stiffness misc Damping misc KDamper misc Inerter misc Seismic Base Absorbers (SBA) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of vibration engineering & technologies |
hierarchy_parent_id |
1030123837 |
hierarchy_top_title |
Journal of vibration engineering & technologies |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)1030123837 (DE-600)2941414-3 |
title |
Feasibility Assessment of Stiff Seismic Base Absorbers |
ctrlnum |
(DE-627)SPR04662578X (SPR)s42417-021-00362-2-e |
title_full |
Feasibility Assessment of Stiff Seismic Base Absorbers |
author_sort |
Kapasakalis, Konstantinos A. |
journal |
Journal of vibration engineering & technologies |
journalStr |
Journal of vibration engineering & technologies |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
37 |
author_browse |
Kapasakalis, Konstantinos A. Antoniadis, Ioannis A. Sapountzakis, Evangelos J. |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Kapasakalis, Konstantinos A. |
doi_str_mv |
10.1007/s42417-021-00362-2 |
normlink |
(ORCID)0000-0002-6619-7374 |
normlink_prefix_str_mv |
(orcid)0000-0002-6619-7374 |
title_sort |
feasibility assessment of stiff seismic base absorbers |
title_auth |
Feasibility Assessment of Stiff Seismic Base Absorbers |
abstract |
Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. © Krishtel eMaging Solutions Private Limited 2021 |
abstractGer |
Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. © Krishtel eMaging Solutions Private Limited 2021 |
abstract_unstemmed |
Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection. © Krishtel eMaging Solutions Private Limited 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Feasibility Assessment of Stiff Seismic Base Absorbers |
url |
https://dx.doi.org/10.1007/s42417-021-00362-2 |
remote_bool |
true |
author2 |
Antoniadis, Ioannis A. Sapountzakis, Evangelos J. |
author2Str |
Antoniadis, Ioannis A. Sapountzakis, Evangelos J. |
ppnlink |
1030123837 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42417-021-00362-2 |
up_date |
2024-07-03T23:36:32.270Z |
_version_ |
1803602930981404672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04662578X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507143525.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220330s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42417-021-00362-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04662578X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42417-021-00362-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kapasakalis, Konstantinos A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6619-7374</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feasibility Assessment of Stiff Seismic Base Absorbers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Krishtel eMaging Solutions Private Limited 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose In this paper, a radically new concept of a Stiff Seismic Base Absorber (SBA) is proposed for seismic protection of multistory building structures. Methods An inerter is first implemented, connecting directly the structure to the ground. This results in the decrease of the natural frequency of the structure, without decreasing its structural stiffness. Parallel, a negative stiffness-based absorber is used to increase the apparent damping behavior of the inerter. The additional mass of the SBA is connected to the structure with a negative stiffness (NS) element and to the base with a positive one. Also, an artificial damper is placed in parallel with each stiffness element. The design of the SBA includes the following novel features: (1) the SBA foresees variation in all stiffness elements, (2) the optimal system parameters are selected based on engineering criteria with proper constraints and limitations to the system dynamic responses, (3) the earthquake input motion is selected according to the seismic design codes, (4) a displacement-dependent non-linear configuration is proposed for the realization of the NS element, and (5) the detuning phenomena are observed via sensitivity analysis. Results Compared to other vibration absorbers, the SBA presents several advantages. An improved superstructure dynamic behavior is observed combined with small base displacements, in the order of a few centimeters. Conclusion The drastically reduced base displacements render the implementation of the SBA feasible using conventional structural elements. As a result, the SBA is a realistic retrofitting option for seismic protection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic protection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative stiffness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KDamper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inerter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic Base Absorbers (SBA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antoniadis, Ioannis A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sapountzakis, Evangelos J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of vibration engineering & technologies</subfield><subfield code="d">Singapore : Springer Singapore, 2018</subfield><subfield code="g">10(2021), 1 vom: 09. Aug., Seite 37-53</subfield><subfield code="w">(DE-627)1030123837</subfield><subfield code="w">(DE-600)2941414-3</subfield><subfield code="x">2523-3939</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:37-53</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42417-021-00362-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield><subfield code="h">37-53</subfield></datafield></record></collection>
|
score |
7.3995314 |