A passive exoskeleton can assist split-belt adaptation
Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exosk...
Ausführliche Beschreibung
Autor*in: |
Sado, Takashi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental brain research - Berlin : Springer, 1966, 240(2022), 4 vom: 14. Feb., Seite 1159-1176 |
---|---|
Übergeordnetes Werk: |
volume:240 ; year:2022 ; number:4 ; day:14 ; month:02 ; pages:1159-1176 |
Links: |
---|
DOI / URN: |
10.1007/s00221-022-06314-w |
---|
Katalog-ID: |
SPR046779930 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046779930 | ||
003 | DE-627 | ||
005 | 20230519233543.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220419s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00221-022-06314-w |2 doi | |
035 | |a (DE-627)SPR046779930 | ||
035 | |a (SPR)s00221-022-06314-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sado, Takashi |e verfasserin |4 aut | |
245 | 1 | 2 | |a A passive exoskeleton can assist split-belt adaptation |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. | ||
650 | 4 | |a Walking |7 (dpeaa)DE-He213 | |
650 | 4 | |a Asymmetry |7 (dpeaa)DE-He213 | |
650 | 4 | |a Motor learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Memory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coordination |7 (dpeaa)DE-He213 | |
650 | 4 | |a Work |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gait mechanics |7 (dpeaa)DE-He213 | |
700 | 1 | |a Nielsen, James |4 aut | |
700 | 1 | |a Glaister, Brian |4 aut | |
700 | 1 | |a Takahashi, Kota Z. |4 aut | |
700 | 1 | |a Malcolm, Philippe |4 aut | |
700 | 1 | |a Mukherjee, Mukul |0 (orcid)0000-0001-9653-0556 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Experimental brain research |d Berlin : Springer, 1966 |g 240(2022), 4 vom: 14. Feb., Seite 1159-1176 |w (DE-627)253723159 |w (DE-600)1459099-2 |x 1432-1106 |7 nnns |
773 | 1 | 8 | |g volume:240 |g year:2022 |g number:4 |g day:14 |g month:02 |g pages:1159-1176 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00221-022-06314-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 240 |j 2022 |e 4 |b 14 |c 02 |h 1159-1176 |
author_variant |
t s ts j n jn b g bg k z t kz kzt p m pm m m mm |
---|---|
matchkey_str |
article:14321106:2022----::psiexseeocnsitpi |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00221-022-06314-w doi (DE-627)SPR046779930 (SPR)s00221-022-06314-w-e DE-627 ger DE-627 rakwb eng Sado, Takashi verfasserin aut A passive exoskeleton can assist split-belt adaptation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. Walking (dpeaa)DE-He213 Asymmetry (dpeaa)DE-He213 Motor learning (dpeaa)DE-He213 Memory (dpeaa)DE-He213 Coordination (dpeaa)DE-He213 Work (dpeaa)DE-He213 Gait mechanics (dpeaa)DE-He213 Nielsen, James aut Glaister, Brian aut Takahashi, Kota Z. aut Malcolm, Philippe aut Mukherjee, Mukul (orcid)0000-0001-9653-0556 aut Enthalten in Experimental brain research Berlin : Springer, 1966 240(2022), 4 vom: 14. Feb., Seite 1159-1176 (DE-627)253723159 (DE-600)1459099-2 1432-1106 nnns volume:240 year:2022 number:4 day:14 month:02 pages:1159-1176 https://dx.doi.org/10.1007/s00221-022-06314-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 240 2022 4 14 02 1159-1176 |
spelling |
10.1007/s00221-022-06314-w doi (DE-627)SPR046779930 (SPR)s00221-022-06314-w-e DE-627 ger DE-627 rakwb eng Sado, Takashi verfasserin aut A passive exoskeleton can assist split-belt adaptation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. Walking (dpeaa)DE-He213 Asymmetry (dpeaa)DE-He213 Motor learning (dpeaa)DE-He213 Memory (dpeaa)DE-He213 Coordination (dpeaa)DE-He213 Work (dpeaa)DE-He213 Gait mechanics (dpeaa)DE-He213 Nielsen, James aut Glaister, Brian aut Takahashi, Kota Z. aut Malcolm, Philippe aut Mukherjee, Mukul (orcid)0000-0001-9653-0556 aut Enthalten in Experimental brain research Berlin : Springer, 1966 240(2022), 4 vom: 14. Feb., Seite 1159-1176 (DE-627)253723159 (DE-600)1459099-2 1432-1106 nnns volume:240 year:2022 number:4 day:14 month:02 pages:1159-1176 https://dx.doi.org/10.1007/s00221-022-06314-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 240 2022 4 14 02 1159-1176 |
allfields_unstemmed |
10.1007/s00221-022-06314-w doi (DE-627)SPR046779930 (SPR)s00221-022-06314-w-e DE-627 ger DE-627 rakwb eng Sado, Takashi verfasserin aut A passive exoskeleton can assist split-belt adaptation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. Walking (dpeaa)DE-He213 Asymmetry (dpeaa)DE-He213 Motor learning (dpeaa)DE-He213 Memory (dpeaa)DE-He213 Coordination (dpeaa)DE-He213 Work (dpeaa)DE-He213 Gait mechanics (dpeaa)DE-He213 Nielsen, James aut Glaister, Brian aut Takahashi, Kota Z. aut Malcolm, Philippe aut Mukherjee, Mukul (orcid)0000-0001-9653-0556 aut Enthalten in Experimental brain research Berlin : Springer, 1966 240(2022), 4 vom: 14. Feb., Seite 1159-1176 (DE-627)253723159 (DE-600)1459099-2 1432-1106 nnns volume:240 year:2022 number:4 day:14 month:02 pages:1159-1176 https://dx.doi.org/10.1007/s00221-022-06314-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 240 2022 4 14 02 1159-1176 |
allfieldsGer |
10.1007/s00221-022-06314-w doi (DE-627)SPR046779930 (SPR)s00221-022-06314-w-e DE-627 ger DE-627 rakwb eng Sado, Takashi verfasserin aut A passive exoskeleton can assist split-belt adaptation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. Walking (dpeaa)DE-He213 Asymmetry (dpeaa)DE-He213 Motor learning (dpeaa)DE-He213 Memory (dpeaa)DE-He213 Coordination (dpeaa)DE-He213 Work (dpeaa)DE-He213 Gait mechanics (dpeaa)DE-He213 Nielsen, James aut Glaister, Brian aut Takahashi, Kota Z. aut Malcolm, Philippe aut Mukherjee, Mukul (orcid)0000-0001-9653-0556 aut Enthalten in Experimental brain research Berlin : Springer, 1966 240(2022), 4 vom: 14. Feb., Seite 1159-1176 (DE-627)253723159 (DE-600)1459099-2 1432-1106 nnns volume:240 year:2022 number:4 day:14 month:02 pages:1159-1176 https://dx.doi.org/10.1007/s00221-022-06314-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 240 2022 4 14 02 1159-1176 |
allfieldsSound |
10.1007/s00221-022-06314-w doi (DE-627)SPR046779930 (SPR)s00221-022-06314-w-e DE-627 ger DE-627 rakwb eng Sado, Takashi verfasserin aut A passive exoskeleton can assist split-belt adaptation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. Walking (dpeaa)DE-He213 Asymmetry (dpeaa)DE-He213 Motor learning (dpeaa)DE-He213 Memory (dpeaa)DE-He213 Coordination (dpeaa)DE-He213 Work (dpeaa)DE-He213 Gait mechanics (dpeaa)DE-He213 Nielsen, James aut Glaister, Brian aut Takahashi, Kota Z. aut Malcolm, Philippe aut Mukherjee, Mukul (orcid)0000-0001-9653-0556 aut Enthalten in Experimental brain research Berlin : Springer, 1966 240(2022), 4 vom: 14. Feb., Seite 1159-1176 (DE-627)253723159 (DE-600)1459099-2 1432-1106 nnns volume:240 year:2022 number:4 day:14 month:02 pages:1159-1176 https://dx.doi.org/10.1007/s00221-022-06314-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 240 2022 4 14 02 1159-1176 |
language |
English |
source |
Enthalten in Experimental brain research 240(2022), 4 vom: 14. Feb., Seite 1159-1176 volume:240 year:2022 number:4 day:14 month:02 pages:1159-1176 |
sourceStr |
Enthalten in Experimental brain research 240(2022), 4 vom: 14. Feb., Seite 1159-1176 volume:240 year:2022 number:4 day:14 month:02 pages:1159-1176 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Walking Asymmetry Motor learning Memory Coordination Work Gait mechanics |
isfreeaccess_bool |
false |
container_title |
Experimental brain research |
authorswithroles_txt_mv |
Sado, Takashi @@aut@@ Nielsen, James @@aut@@ Glaister, Brian @@aut@@ Takahashi, Kota Z. @@aut@@ Malcolm, Philippe @@aut@@ Mukherjee, Mukul @@aut@@ |
publishDateDaySort_date |
2022-02-14T00:00:00Z |
hierarchy_top_id |
253723159 |
id |
SPR046779930 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046779930</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519233543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220419s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00221-022-06314-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046779930</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00221-022-06314-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sado, Takashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A passive exoskeleton can assist split-belt adaptation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Walking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motor learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Work</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gait mechanics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nielsen, James</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glaister, Brian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takahashi, Kota Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malcolm, Philippe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukherjee, Mukul</subfield><subfield code="0">(orcid)0000-0001-9653-0556</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental brain research</subfield><subfield code="d">Berlin : Springer, 1966</subfield><subfield code="g">240(2022), 4 vom: 14. Feb., Seite 1159-1176</subfield><subfield code="w">(DE-627)253723159</subfield><subfield code="w">(DE-600)1459099-2</subfield><subfield code="x">1432-1106</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:240</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1159-1176</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00221-022-06314-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">240</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield><subfield code="h">1159-1176</subfield></datafield></record></collection>
|
author |
Sado, Takashi |
spellingShingle |
Sado, Takashi misc Walking misc Asymmetry misc Motor learning misc Memory misc Coordination misc Work misc Gait mechanics A passive exoskeleton can assist split-belt adaptation |
authorStr |
Sado, Takashi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)253723159 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-1106 |
topic_title |
A passive exoskeleton can assist split-belt adaptation Walking (dpeaa)DE-He213 Asymmetry (dpeaa)DE-He213 Motor learning (dpeaa)DE-He213 Memory (dpeaa)DE-He213 Coordination (dpeaa)DE-He213 Work (dpeaa)DE-He213 Gait mechanics (dpeaa)DE-He213 |
topic |
misc Walking misc Asymmetry misc Motor learning misc Memory misc Coordination misc Work misc Gait mechanics |
topic_unstemmed |
misc Walking misc Asymmetry misc Motor learning misc Memory misc Coordination misc Work misc Gait mechanics |
topic_browse |
misc Walking misc Asymmetry misc Motor learning misc Memory misc Coordination misc Work misc Gait mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Experimental brain research |
hierarchy_parent_id |
253723159 |
hierarchy_top_title |
Experimental brain research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)253723159 (DE-600)1459099-2 |
title |
A passive exoskeleton can assist split-belt adaptation |
ctrlnum |
(DE-627)SPR046779930 (SPR)s00221-022-06314-w-e |
title_full |
A passive exoskeleton can assist split-belt adaptation |
author_sort |
Sado, Takashi |
journal |
Experimental brain research |
journalStr |
Experimental brain research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1159 |
author_browse |
Sado, Takashi Nielsen, James Glaister, Brian Takahashi, Kota Z. Malcolm, Philippe Mukherjee, Mukul |
container_volume |
240 |
format_se |
Elektronische Aufsätze |
author-letter |
Sado, Takashi |
doi_str_mv |
10.1007/s00221-022-06314-w |
normlink |
(ORCID)0000-0001-9653-0556 |
normlink_prefix_str_mv |
(orcid)0000-0001-9653-0556 |
title_sort |
passive exoskeleton can assist split-belt adaptation |
title_auth |
A passive exoskeleton can assist split-belt adaptation |
abstract |
Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
A passive exoskeleton can assist split-belt adaptation |
url |
https://dx.doi.org/10.1007/s00221-022-06314-w |
remote_bool |
true |
author2 |
Nielsen, James Glaister, Brian Takahashi, Kota Z. Malcolm, Philippe Mukherjee, Mukul |
author2Str |
Nielsen, James Glaister, Brian Takahashi, Kota Z. Malcolm, Philippe Mukherjee, Mukul |
ppnlink |
253723159 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00221-022-06314-w |
up_date |
2024-07-04T00:21:48.530Z |
_version_ |
1803605779188547584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046779930</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519233543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220419s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00221-022-06314-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046779930</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00221-022-06314-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sado, Takashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A passive exoskeleton can assist split-belt adaptation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Walking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motor learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Work</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gait mechanics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nielsen, James</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glaister, Brian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takahashi, Kota Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malcolm, Philippe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukherjee, Mukul</subfield><subfield code="0">(orcid)0000-0001-9653-0556</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental brain research</subfield><subfield code="d">Berlin : Springer, 1966</subfield><subfield code="g">240(2022), 4 vom: 14. Feb., Seite 1159-1176</subfield><subfield code="w">(DE-627)253723159</subfield><subfield code="w">(DE-600)1459099-2</subfield><subfield code="x">1432-1106</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:240</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1159-1176</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00221-022-06314-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">240</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield><subfield code="h">1159-1176</subfield></datafield></record></collection>
|
score |
7.400199 |