Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation
Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be invest...
Ausführliche Beschreibung
Autor*in: |
Hu, Zhicai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990, 108(2022), 3 vom: 21. Feb., Seite 2731-2749 |
---|---|
Übergeordnetes Werk: |
volume:108 ; year:2022 ; number:3 ; day:21 ; month:02 ; pages:2731-2749 |
Links: |
---|
DOI / URN: |
10.1007/s11071-022-07292-y |
---|
Katalog-ID: |
SPR046817980 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046817980 | ||
003 | DE-627 | ||
005 | 20230507162606.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220423s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-022-07292-y |2 doi | |
035 | |a (DE-627)SPR046817980 | ||
035 | |a (SPR)s11071-022-07292-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Hu, Zhicai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022 | ||
520 | |a Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. | ||
650 | 4 | |a Stochastic resonance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gating function |7 (dpeaa)DE-He213 | |
650 | 4 | |a Field-programmable gate array |7 (dpeaa)DE-He213 | |
650 | 4 | |a Information transmission |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Jiang |4 aut | |
700 | 1 | |a Hao, Xinyu |4 aut | |
700 | 1 | |a Li, Kai |0 (orcid)0000-0002-2555-5411 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 |g 108(2022), 3 vom: 21. Feb., Seite 2731-2749 |w (DE-627)315297034 |w (DE-600)2012600-1 |x 1573-269X |7 nnns |
773 | 1 | 8 | |g volume:108 |g year:2022 |g number:3 |g day:21 |g month:02 |g pages:2731-2749 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11071-022-07292-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 108 |j 2022 |e 3 |b 21 |c 02 |h 2731-2749 |
author_variant |
z h zh j w jw x h xh k l kl |
---|---|
matchkey_str |
article:1573269X:2022----::aigucinaeotasisodlyadtcatceoacimtfew |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11071-022-07292-y doi (DE-627)SPR046817980 (SPR)s11071-022-07292-y-e DE-627 ger DE-627 rakwb eng Hu, Zhicai verfasserin aut Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. Stochastic resonance (dpeaa)DE-He213 Gating function (dpeaa)DE-He213 Field-programmable gate array (dpeaa)DE-He213 Information transmission (dpeaa)DE-He213 Wang, Jiang aut Hao, Xinyu aut Li, Kai (orcid)0000-0002-2555-5411 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 108(2022), 3 vom: 21. Feb., Seite 2731-2749 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:108 year:2022 number:3 day:21 month:02 pages:2731-2749 https://dx.doi.org/10.1007/s11071-022-07292-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 108 2022 3 21 02 2731-2749 |
spelling |
10.1007/s11071-022-07292-y doi (DE-627)SPR046817980 (SPR)s11071-022-07292-y-e DE-627 ger DE-627 rakwb eng Hu, Zhicai verfasserin aut Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. Stochastic resonance (dpeaa)DE-He213 Gating function (dpeaa)DE-He213 Field-programmable gate array (dpeaa)DE-He213 Information transmission (dpeaa)DE-He213 Wang, Jiang aut Hao, Xinyu aut Li, Kai (orcid)0000-0002-2555-5411 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 108(2022), 3 vom: 21. Feb., Seite 2731-2749 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:108 year:2022 number:3 day:21 month:02 pages:2731-2749 https://dx.doi.org/10.1007/s11071-022-07292-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 108 2022 3 21 02 2731-2749 |
allfields_unstemmed |
10.1007/s11071-022-07292-y doi (DE-627)SPR046817980 (SPR)s11071-022-07292-y-e DE-627 ger DE-627 rakwb eng Hu, Zhicai verfasserin aut Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. Stochastic resonance (dpeaa)DE-He213 Gating function (dpeaa)DE-He213 Field-programmable gate array (dpeaa)DE-He213 Information transmission (dpeaa)DE-He213 Wang, Jiang aut Hao, Xinyu aut Li, Kai (orcid)0000-0002-2555-5411 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 108(2022), 3 vom: 21. Feb., Seite 2731-2749 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:108 year:2022 number:3 day:21 month:02 pages:2731-2749 https://dx.doi.org/10.1007/s11071-022-07292-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 108 2022 3 21 02 2731-2749 |
allfieldsGer |
10.1007/s11071-022-07292-y doi (DE-627)SPR046817980 (SPR)s11071-022-07292-y-e DE-627 ger DE-627 rakwb eng Hu, Zhicai verfasserin aut Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. Stochastic resonance (dpeaa)DE-He213 Gating function (dpeaa)DE-He213 Field-programmable gate array (dpeaa)DE-He213 Information transmission (dpeaa)DE-He213 Wang, Jiang aut Hao, Xinyu aut Li, Kai (orcid)0000-0002-2555-5411 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 108(2022), 3 vom: 21. Feb., Seite 2731-2749 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:108 year:2022 number:3 day:21 month:02 pages:2731-2749 https://dx.doi.org/10.1007/s11071-022-07292-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 108 2022 3 21 02 2731-2749 |
allfieldsSound |
10.1007/s11071-022-07292-y doi (DE-627)SPR046817980 (SPR)s11071-022-07292-y-e DE-627 ger DE-627 rakwb eng Hu, Zhicai verfasserin aut Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. Stochastic resonance (dpeaa)DE-He213 Gating function (dpeaa)DE-He213 Field-programmable gate array (dpeaa)DE-He213 Information transmission (dpeaa)DE-He213 Wang, Jiang aut Hao, Xinyu aut Li, Kai (orcid)0000-0002-2555-5411 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 108(2022), 3 vom: 21. Feb., Seite 2731-2749 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:108 year:2022 number:3 day:21 month:02 pages:2731-2749 https://dx.doi.org/10.1007/s11071-022-07292-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 108 2022 3 21 02 2731-2749 |
language |
English |
source |
Enthalten in Nonlinear dynamics 108(2022), 3 vom: 21. Feb., Seite 2731-2749 volume:108 year:2022 number:3 day:21 month:02 pages:2731-2749 |
sourceStr |
Enthalten in Nonlinear dynamics 108(2022), 3 vom: 21. Feb., Seite 2731-2749 volume:108 year:2022 number:3 day:21 month:02 pages:2731-2749 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stochastic resonance Gating function Field-programmable gate array Information transmission |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Hu, Zhicai @@aut@@ Wang, Jiang @@aut@@ Hao, Xinyu @@aut@@ Li, Kai @@aut@@ |
publishDateDaySort_date |
2022-02-21T00:00:00Z |
hierarchy_top_id |
315297034 |
id |
SPR046817980 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046817980</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507162606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220423s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-022-07292-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046817980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11071-022-07292-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Zhicai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gating function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field-programmable gate array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information transmission</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Xinyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Kai</subfield><subfield code="0">(orcid)0000-0002-2555-5411</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990</subfield><subfield code="g">108(2022), 3 vom: 21. Feb., Seite 2731-2749</subfield><subfield code="w">(DE-627)315297034</subfield><subfield code="w">(DE-600)2012600-1</subfield><subfield code="x">1573-269X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:21</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2731-2749</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11071-022-07292-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">21</subfield><subfield code="c">02</subfield><subfield code="h">2731-2749</subfield></datafield></record></collection>
|
author |
Hu, Zhicai |
spellingShingle |
Hu, Zhicai misc Stochastic resonance misc Gating function misc Field-programmable gate array misc Information transmission Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation |
authorStr |
Hu, Zhicai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)315297034 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-269X |
topic_title |
Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation Stochastic resonance (dpeaa)DE-He213 Gating function (dpeaa)DE-He213 Field-programmable gate array (dpeaa)DE-He213 Information transmission (dpeaa)DE-He213 |
topic |
misc Stochastic resonance misc Gating function misc Field-programmable gate array misc Information transmission |
topic_unstemmed |
misc Stochastic resonance misc Gating function misc Field-programmable gate array misc Information transmission |
topic_browse |
misc Stochastic resonance misc Gating function misc Field-programmable gate array misc Information transmission |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
315297034 |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)315297034 (DE-600)2012600-1 |
title |
Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation |
ctrlnum |
(DE-627)SPR046817980 (SPR)s11071-022-07292-y-e |
title_full |
Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation |
author_sort |
Hu, Zhicai |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2731 |
author_browse |
Hu, Zhicai Wang, Jiang Hao, Xinyu Li, Kai |
container_volume |
108 |
format_se |
Elektronische Aufsätze |
author-letter |
Hu, Zhicai |
doi_str_mv |
10.1007/s11071-022-07292-y |
normlink |
(ORCID)0000-0002-2555-5411 |
normlink_prefix_str_mv |
(orcid)0000-0002-2555-5411 |
title_sort |
gating function based on transmission delays and stochastic resonance in motif network with fpga implementation |
title_auth |
Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation |
abstract |
Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
abstractGer |
Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
abstract_unstemmed |
Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation |
url |
https://dx.doi.org/10.1007/s11071-022-07292-y |
remote_bool |
true |
author2 |
Wang, Jiang Hao, Xinyu Li, Kai |
author2Str |
Wang, Jiang Hao, Xinyu Li, Kai |
ppnlink |
315297034 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-022-07292-y |
up_date |
2024-07-04T00:33:39.457Z |
_version_ |
1803606524651634688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046817980</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507162606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220423s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-022-07292-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046817980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11071-022-07292-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Zhicai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gating function based on transmission delays and stochastic resonance in motif network with FPGA implementation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Attuned function of different brain regions relies on the precise yet flexible communication between their subsystems, and flexible gating of information flow among brain motif network could increase neuronal response which is selected. However, the underlying mechanism remains to be investigated. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale motif cortical network via field-programmable gate array (FPGA). Based on FPGA network model, we explore the information transmission in cortical network by investigating the gating function from the perspective of stochastic resonance, which is an important way for neuronal population to communicate. Remarkably, it is found that the cortical network can only transmit signal when the excitatory-inhibitory (E/I) balance is lopsided, which is called as “E/I semi-balanced state.” Moreover, time delay between populations affects the information transmission mainly by determining the phase timestamp at which the signal is transmitted from one region to another. In short, E/I semi-balance and time delay together realize the gating function to input in cortical motif network. The experimental results demonstrate that the gating function of information is determined by E/I semi-balance and time delay in cortical motif network. Besides, mean-field theory is applied to verify the simulation results, and the cortical network is found to resonate in the form of cycle dynamics. Verification result shows that the simulation speed on hardware is 27.4 ms, which is much better than the 90 s on MATLAB. Consequently, the hardware synthesis results indicate high computational speed and low area utilization, which helps to deploy the function realization of biological neuronal network in intelligent control and remote communication.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gating function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field-programmable gate array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information transmission</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Xinyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Kai</subfield><subfield code="0">(orcid)0000-0002-2555-5411</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990</subfield><subfield code="g">108(2022), 3 vom: 21. Feb., Seite 2731-2749</subfield><subfield code="w">(DE-627)315297034</subfield><subfield code="w">(DE-600)2012600-1</subfield><subfield code="x">1573-269X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:21</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2731-2749</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11071-022-07292-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">21</subfield><subfield code="c">02</subfield><subfield code="h">2731-2749</subfield></datafield></record></collection>
|
score |
7.3995953 |