Event-driven temporal models for explanations - ETeMoX: explaining reinforcement learning

Abstract Modern software systems are increasingly expected to show higher degrees of autonomy and self-management to cope with uncertain and diverse situations. As a consequence, autonomous systems can exhibit unexpected and surprising behaviours. This is exacerbated due to the ubiquity and complexi...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Parra-Ullauri, Juan Marcelo [verfasserIn]

García-Domínguez, Antonio

Bencomo, Nelly

Zheng, Changgang

Zhen, Chen

Boubeta-Puig, Juan

Ortiz, Guadalupe

Yang, Shufan

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Temporal models

Complex event processing

Artificial intelligence

Explainable reinforcement learning

Event-driven monitoring

Anmerkung:

© The Author(s) 2021

Übergeordnetes Werk:

Enthalten in: Software and systems modeling - Berlin : Springer, 2002, 21(2021), 3 vom: 18. Dez., Seite 1091-1113

Übergeordnetes Werk:

volume:21 ; year:2021 ; number:3 ; day:18 ; month:12 ; pages:1091-1113

Links:

Volltext

DOI / URN:

10.1007/s10270-021-00952-4

Katalog-ID:

SPR046836535

Nicht das Richtige dabei?

Schreiben Sie uns!