Preparation and benchmarking of novel cellulose nanopaper
Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic pac...
Ausführliche Beschreibung
Autor*in: |
Kargupta, Wriju [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Cellulose - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994, 29(2022), 8 vom: 15. Apr., Seite 4393-4411 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2022 ; number:8 ; day:15 ; month:04 ; pages:4393-4411 |
Links: |
---|
DOI / URN: |
10.1007/s10570-022-04563-0 |
---|
Katalog-ID: |
SPR046924752 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046924752 | ||
003 | DE-627 | ||
005 | 20230507173611.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10570-022-04563-0 |2 doi | |
035 | |a (DE-627)SPR046924752 | ||
035 | |a (SPR)s10570-022-04563-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kargupta, Wriju |e verfasserin |0 (orcid)0000-0002-7341-1818 |4 aut | |
245 | 1 | 0 | |a Preparation and benchmarking of novel cellulose nanopaper |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract | ||
650 | 4 | |a Water vapour permeability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Oxygen permeability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Refining |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nanopaper |7 (dpeaa)DE-He213 | |
700 | 1 | |a Seifert, Reanna |4 aut | |
700 | 1 | |a Martinez, Mark |4 aut | |
700 | 1 | |a Olson, James |4 aut | |
700 | 1 | |a Tanner, Joanne |4 aut | |
700 | 1 | |a Batchelor, Warren |0 (orcid)0000-0001-6880-7765 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cellulose |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 |g 29(2022), 8 vom: 15. Apr., Seite 4393-4411 |w (DE-627)306353857 |w (DE-600)1496831-9 |x 1572-882X |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2022 |g number:8 |g day:15 |g month:04 |g pages:4393-4411 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10570-022-04563-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 29 |j 2022 |e 8 |b 15 |c 04 |h 4393-4411 |
author_variant |
w k wk r s rs m m mm j o jo j t jt w b wb |
---|---|
matchkey_str |
article:1572882X:2022----::rprtoadecmrigfoecl |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10570-022-04563-0 doi (DE-627)SPR046924752 (SPR)s10570-022-04563-0-e DE-627 ger DE-627 rakwb eng Kargupta, Wriju verfasserin (orcid)0000-0002-7341-1818 aut Preparation and benchmarking of novel cellulose nanopaper 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract Water vapour permeability (dpeaa)DE-He213 Oxygen permeability (dpeaa)DE-He213 Refining (dpeaa)DE-He213 Nanopaper (dpeaa)DE-He213 Seifert, Reanna aut Martinez, Mark aut Olson, James aut Tanner, Joanne aut Batchelor, Warren (orcid)0000-0001-6880-7765 aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 8 vom: 15. Apr., Seite 4393-4411 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:8 day:15 month:04 pages:4393-4411 https://dx.doi.org/10.1007/s10570-022-04563-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 8 15 04 4393-4411 |
spelling |
10.1007/s10570-022-04563-0 doi (DE-627)SPR046924752 (SPR)s10570-022-04563-0-e DE-627 ger DE-627 rakwb eng Kargupta, Wriju verfasserin (orcid)0000-0002-7341-1818 aut Preparation and benchmarking of novel cellulose nanopaper 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract Water vapour permeability (dpeaa)DE-He213 Oxygen permeability (dpeaa)DE-He213 Refining (dpeaa)DE-He213 Nanopaper (dpeaa)DE-He213 Seifert, Reanna aut Martinez, Mark aut Olson, James aut Tanner, Joanne aut Batchelor, Warren (orcid)0000-0001-6880-7765 aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 8 vom: 15. Apr., Seite 4393-4411 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:8 day:15 month:04 pages:4393-4411 https://dx.doi.org/10.1007/s10570-022-04563-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 8 15 04 4393-4411 |
allfields_unstemmed |
10.1007/s10570-022-04563-0 doi (DE-627)SPR046924752 (SPR)s10570-022-04563-0-e DE-627 ger DE-627 rakwb eng Kargupta, Wriju verfasserin (orcid)0000-0002-7341-1818 aut Preparation and benchmarking of novel cellulose nanopaper 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract Water vapour permeability (dpeaa)DE-He213 Oxygen permeability (dpeaa)DE-He213 Refining (dpeaa)DE-He213 Nanopaper (dpeaa)DE-He213 Seifert, Reanna aut Martinez, Mark aut Olson, James aut Tanner, Joanne aut Batchelor, Warren (orcid)0000-0001-6880-7765 aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 8 vom: 15. Apr., Seite 4393-4411 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:8 day:15 month:04 pages:4393-4411 https://dx.doi.org/10.1007/s10570-022-04563-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 8 15 04 4393-4411 |
allfieldsGer |
10.1007/s10570-022-04563-0 doi (DE-627)SPR046924752 (SPR)s10570-022-04563-0-e DE-627 ger DE-627 rakwb eng Kargupta, Wriju verfasserin (orcid)0000-0002-7341-1818 aut Preparation and benchmarking of novel cellulose nanopaper 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract Water vapour permeability (dpeaa)DE-He213 Oxygen permeability (dpeaa)DE-He213 Refining (dpeaa)DE-He213 Nanopaper (dpeaa)DE-He213 Seifert, Reanna aut Martinez, Mark aut Olson, James aut Tanner, Joanne aut Batchelor, Warren (orcid)0000-0001-6880-7765 aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 8 vom: 15. Apr., Seite 4393-4411 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:8 day:15 month:04 pages:4393-4411 https://dx.doi.org/10.1007/s10570-022-04563-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 8 15 04 4393-4411 |
allfieldsSound |
10.1007/s10570-022-04563-0 doi (DE-627)SPR046924752 (SPR)s10570-022-04563-0-e DE-627 ger DE-627 rakwb eng Kargupta, Wriju verfasserin (orcid)0000-0002-7341-1818 aut Preparation and benchmarking of novel cellulose nanopaper 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract Water vapour permeability (dpeaa)DE-He213 Oxygen permeability (dpeaa)DE-He213 Refining (dpeaa)DE-He213 Nanopaper (dpeaa)DE-He213 Seifert, Reanna aut Martinez, Mark aut Olson, James aut Tanner, Joanne aut Batchelor, Warren (orcid)0000-0001-6880-7765 aut Enthalten in Cellulose Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994 29(2022), 8 vom: 15. Apr., Seite 4393-4411 (DE-627)306353857 (DE-600)1496831-9 1572-882X nnns volume:29 year:2022 number:8 day:15 month:04 pages:4393-4411 https://dx.doi.org/10.1007/s10570-022-04563-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 29 2022 8 15 04 4393-4411 |
language |
English |
source |
Enthalten in Cellulose 29(2022), 8 vom: 15. Apr., Seite 4393-4411 volume:29 year:2022 number:8 day:15 month:04 pages:4393-4411 |
sourceStr |
Enthalten in Cellulose 29(2022), 8 vom: 15. Apr., Seite 4393-4411 volume:29 year:2022 number:8 day:15 month:04 pages:4393-4411 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Water vapour permeability Oxygen permeability Refining Nanopaper |
isfreeaccess_bool |
true |
container_title |
Cellulose |
authorswithroles_txt_mv |
Kargupta, Wriju @@aut@@ Seifert, Reanna @@aut@@ Martinez, Mark @@aut@@ Olson, James @@aut@@ Tanner, Joanne @@aut@@ Batchelor, Warren @@aut@@ |
publishDateDaySort_date |
2022-04-15T00:00:00Z |
hierarchy_top_id |
306353857 |
id |
SPR046924752 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046924752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507173611.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10570-022-04563-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046924752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10570-022-04563-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kargupta, Wriju</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7341-1818</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and benchmarking of novel cellulose nanopaper</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water vapour permeability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen permeability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refining</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanopaper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seifert, Reanna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martinez, Mark</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olson, James</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanner, Joanne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Batchelor, Warren</subfield><subfield code="0">(orcid)0000-0001-6880-7765</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cellulose</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994</subfield><subfield code="g">29(2022), 8 vom: 15. Apr., Seite 4393-4411</subfield><subfield code="w">(DE-627)306353857</subfield><subfield code="w">(DE-600)1496831-9</subfield><subfield code="x">1572-882X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4393-4411</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10570-022-04563-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield><subfield code="h">4393-4411</subfield></datafield></record></collection>
|
author |
Kargupta, Wriju |
spellingShingle |
Kargupta, Wriju misc Water vapour permeability misc Oxygen permeability misc Refining misc Nanopaper Preparation and benchmarking of novel cellulose nanopaper |
authorStr |
Kargupta, Wriju |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306353857 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-882X |
topic_title |
Preparation and benchmarking of novel cellulose nanopaper Water vapour permeability (dpeaa)DE-He213 Oxygen permeability (dpeaa)DE-He213 Refining (dpeaa)DE-He213 Nanopaper (dpeaa)DE-He213 |
topic |
misc Water vapour permeability misc Oxygen permeability misc Refining misc Nanopaper |
topic_unstemmed |
misc Water vapour permeability misc Oxygen permeability misc Refining misc Nanopaper |
topic_browse |
misc Water vapour permeability misc Oxygen permeability misc Refining misc Nanopaper |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cellulose |
hierarchy_parent_id |
306353857 |
hierarchy_top_title |
Cellulose |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)306353857 (DE-600)1496831-9 |
title |
Preparation and benchmarking of novel cellulose nanopaper |
ctrlnum |
(DE-627)SPR046924752 (SPR)s10570-022-04563-0-e |
title_full |
Preparation and benchmarking of novel cellulose nanopaper |
author_sort |
Kargupta, Wriju |
journal |
Cellulose |
journalStr |
Cellulose |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
4393 |
author_browse |
Kargupta, Wriju Seifert, Reanna Martinez, Mark Olson, James Tanner, Joanne Batchelor, Warren |
container_volume |
29 |
format_se |
Elektronische Aufsätze |
author-letter |
Kargupta, Wriju |
doi_str_mv |
10.1007/s10570-022-04563-0 |
normlink |
(ORCID)0000-0002-7341-1818 (ORCID)0000-0001-6880-7765 |
normlink_prefix_str_mv |
(orcid)0000-0002-7341-1818 (orcid)0000-0001-6880-7765 |
title_sort |
preparation and benchmarking of novel cellulose nanopaper |
title_auth |
Preparation and benchmarking of novel cellulose nanopaper |
abstract |
Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract © The Author(s) 2022 |
abstractGer |
Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract © The Author(s) 2022 |
abstract_unstemmed |
Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Preparation and benchmarking of novel cellulose nanopaper |
url |
https://dx.doi.org/10.1007/s10570-022-04563-0 |
remote_bool |
true |
author2 |
Seifert, Reanna Martinez, Mark Olson, James Tanner, Joanne Batchelor, Warren |
author2Str |
Seifert, Reanna Martinez, Mark Olson, James Tanner, Joanne Batchelor, Warren |
ppnlink |
306353857 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10570-022-04563-0 |
up_date |
2024-07-04T01:03:57.199Z |
_version_ |
1803608430685978624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046924752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507173611.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10570-022-04563-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046924752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10570-022-04563-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kargupta, Wriju</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7341-1818</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and benchmarking of novel cellulose nanopaper</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Synthetic polymers and plastics which are currently used as barrier materials in packaging applications are neither renewable nor biodegradable. Nanopaper, which is obtained by breaking down cellulose fibers into nanoscale particles, have unique properties with the potential to replace synthetic packaging materials, but requires very high energy to mechanically process the fibers into nanopaper. This research investigates whether refining alone can be used to produce nanopaper with sufficient quality for packaging applications. Nanopaper was produced from Bleached Eucalyptus Kraft (BEK) refined with a PFI mill and from Northern Bleached Softwood Kraft (NBSK) refined in a pilot disc refiner. Both trials found a plateau for oxygen permeability and water vapour permeability that was reached after 1800 kWh/t and 12,000 kWh/t for refining in the pilot disc refiner and PFI mill, respectively. Refining beyond these optima produced either little or no reduction in permeability, while increasing the drainage time to form a sheet. However, elastic modulus, strain at break and sheet light transmittance did continue to increase. The plateau oxygen permeability of ~ 1.24 (cc µm)/($ m^{2} $ day kPa) is 1–3 orders of magnitude lower than the oxygen permeability for PET and LDPE, respectively, while the plateau water vapour permeability ~ 3 × $ 10^{–11} $ g/m.s. Pa was 1–2 orders of magnitude higher than for PET and LDPE. The improved strength and barrier properties of nanopaper achieved at lab and pilot scale mechanical refining process promises a sustainable alternative to conventional packaging. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water vapour permeability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen permeability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refining</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanopaper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seifert, Reanna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martinez, Mark</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olson, James</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanner, Joanne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Batchelor, Warren</subfield><subfield code="0">(orcid)0000-0001-6880-7765</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cellulose</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994</subfield><subfield code="g">29(2022), 8 vom: 15. Apr., Seite 4393-4411</subfield><subfield code="w">(DE-627)306353857</subfield><subfield code="w">(DE-600)1496831-9</subfield><subfield code="x">1572-882X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4393-4411</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10570-022-04563-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield><subfield code="h">4393-4411</subfield></datafield></record></collection>
|
score |
7.4018154 |