Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment
Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive...
Ausführliche Beschreibung
Autor*in: |
Haase, M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Energy, Sustainability and Society - Berlin : Springer, 2011, 12(2022), 1 vom: 12. Mai |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; day:12 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/s13705-022-00344-6 |
---|
Katalog-ID: |
SPR046981454 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR046981454 | ||
003 | DE-627 | ||
005 | 20230507180624.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220513s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13705-022-00344-6 |2 doi | |
035 | |a (DE-627)SPR046981454 | ||
035 | |a (SPR)s13705-022-00344-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Haase, M. |e verfasserin |0 (orcid)0000-0002-9098-3930 |4 aut | |
245 | 1 | 0 | |a Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. | ||
650 | 4 | |a Biomass |7 (dpeaa)DE-He213 | |
650 | 4 | |a Energy storage |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hydrogen |7 (dpeaa)DE-He213 | |
650 | 4 | |a Life cycle assessment (LCA) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Life cycle costing (LCC) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Social indicators |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sustainability assessment |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wulf, C. |4 aut | |
700 | 1 | |a Baumann, M. |4 aut | |
700 | 1 | |a Rösch, C. |4 aut | |
700 | 1 | |a Weil, M. |4 aut | |
700 | 1 | |a Zapp, P. |4 aut | |
700 | 1 | |a Naegler, T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy, Sustainability and Society |d Berlin : Springer, 2011 |g 12(2022), 1 vom: 12. Mai |w (DE-627)679779221 |w (DE-600)2641015-1 |x 2192-0567 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g day:12 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13705-022-00344-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |b 12 |c 05 |
author_variant |
m h mh c w cw m b mb c r cr m w mw p z pz t n tn |
---|---|
matchkey_str |
article:21920567:2022----::rsetvassmnoeegtcnlgeaopeesvapocfr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13705-022-00344-6 doi (DE-627)SPR046981454 (SPR)s13705-022-00344-6-e DE-627 ger DE-627 rakwb eng Haase, M. verfasserin (orcid)0000-0002-9098-3930 aut Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. Biomass (dpeaa)DE-He213 Energy storage (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Life cycle assessment (LCA) (dpeaa)DE-He213 Life cycle costing (LCC) (dpeaa)DE-He213 Social indicators (dpeaa)DE-He213 Sustainability assessment (dpeaa)DE-He213 Wulf, C. aut Baumann, M. aut Rösch, C. aut Weil, M. aut Zapp, P. aut Naegler, T. aut Enthalten in Energy, Sustainability and Society Berlin : Springer, 2011 12(2022), 1 vom: 12. Mai (DE-627)679779221 (DE-600)2641015-1 2192-0567 nnns volume:12 year:2022 number:1 day:12 month:05 https://dx.doi.org/10.1186/s13705-022-00344-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 05 |
spelling |
10.1186/s13705-022-00344-6 doi (DE-627)SPR046981454 (SPR)s13705-022-00344-6-e DE-627 ger DE-627 rakwb eng Haase, M. verfasserin (orcid)0000-0002-9098-3930 aut Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. Biomass (dpeaa)DE-He213 Energy storage (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Life cycle assessment (LCA) (dpeaa)DE-He213 Life cycle costing (LCC) (dpeaa)DE-He213 Social indicators (dpeaa)DE-He213 Sustainability assessment (dpeaa)DE-He213 Wulf, C. aut Baumann, M. aut Rösch, C. aut Weil, M. aut Zapp, P. aut Naegler, T. aut Enthalten in Energy, Sustainability and Society Berlin : Springer, 2011 12(2022), 1 vom: 12. Mai (DE-627)679779221 (DE-600)2641015-1 2192-0567 nnns volume:12 year:2022 number:1 day:12 month:05 https://dx.doi.org/10.1186/s13705-022-00344-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 05 |
allfields_unstemmed |
10.1186/s13705-022-00344-6 doi (DE-627)SPR046981454 (SPR)s13705-022-00344-6-e DE-627 ger DE-627 rakwb eng Haase, M. verfasserin (orcid)0000-0002-9098-3930 aut Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. Biomass (dpeaa)DE-He213 Energy storage (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Life cycle assessment (LCA) (dpeaa)DE-He213 Life cycle costing (LCC) (dpeaa)DE-He213 Social indicators (dpeaa)DE-He213 Sustainability assessment (dpeaa)DE-He213 Wulf, C. aut Baumann, M. aut Rösch, C. aut Weil, M. aut Zapp, P. aut Naegler, T. aut Enthalten in Energy, Sustainability and Society Berlin : Springer, 2011 12(2022), 1 vom: 12. Mai (DE-627)679779221 (DE-600)2641015-1 2192-0567 nnns volume:12 year:2022 number:1 day:12 month:05 https://dx.doi.org/10.1186/s13705-022-00344-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 05 |
allfieldsGer |
10.1186/s13705-022-00344-6 doi (DE-627)SPR046981454 (SPR)s13705-022-00344-6-e DE-627 ger DE-627 rakwb eng Haase, M. verfasserin (orcid)0000-0002-9098-3930 aut Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. Biomass (dpeaa)DE-He213 Energy storage (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Life cycle assessment (LCA) (dpeaa)DE-He213 Life cycle costing (LCC) (dpeaa)DE-He213 Social indicators (dpeaa)DE-He213 Sustainability assessment (dpeaa)DE-He213 Wulf, C. aut Baumann, M. aut Rösch, C. aut Weil, M. aut Zapp, P. aut Naegler, T. aut Enthalten in Energy, Sustainability and Society Berlin : Springer, 2011 12(2022), 1 vom: 12. Mai (DE-627)679779221 (DE-600)2641015-1 2192-0567 nnns volume:12 year:2022 number:1 day:12 month:05 https://dx.doi.org/10.1186/s13705-022-00344-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 05 |
allfieldsSound |
10.1186/s13705-022-00344-6 doi (DE-627)SPR046981454 (SPR)s13705-022-00344-6-e DE-627 ger DE-627 rakwb eng Haase, M. verfasserin (orcid)0000-0002-9098-3930 aut Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. Biomass (dpeaa)DE-He213 Energy storage (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Life cycle assessment (LCA) (dpeaa)DE-He213 Life cycle costing (LCC) (dpeaa)DE-He213 Social indicators (dpeaa)DE-He213 Sustainability assessment (dpeaa)DE-He213 Wulf, C. aut Baumann, M. aut Rösch, C. aut Weil, M. aut Zapp, P. aut Naegler, T. aut Enthalten in Energy, Sustainability and Society Berlin : Springer, 2011 12(2022), 1 vom: 12. Mai (DE-627)679779221 (DE-600)2641015-1 2192-0567 nnns volume:12 year:2022 number:1 day:12 month:05 https://dx.doi.org/10.1186/s13705-022-00344-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 05 |
language |
English |
source |
Enthalten in Energy, Sustainability and Society 12(2022), 1 vom: 12. Mai volume:12 year:2022 number:1 day:12 month:05 |
sourceStr |
Enthalten in Energy, Sustainability and Society 12(2022), 1 vom: 12. Mai volume:12 year:2022 number:1 day:12 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biomass Energy storage Hydrogen Life cycle assessment (LCA) Life cycle costing (LCC) Social indicators Sustainability assessment |
isfreeaccess_bool |
true |
container_title |
Energy, Sustainability and Society |
authorswithroles_txt_mv |
Haase, M. @@aut@@ Wulf, C. @@aut@@ Baumann, M. @@aut@@ Rösch, C. @@aut@@ Weil, M. @@aut@@ Zapp, P. @@aut@@ Naegler, T. @@aut@@ |
publishDateDaySort_date |
2022-05-12T00:00:00Z |
hierarchy_top_id |
679779221 |
id |
SPR046981454 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046981454</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507180624.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220513s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13705-022-00344-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046981454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13705-022-00344-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haase, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9098-3930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life cycle assessment (LCA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life cycle costing (LCC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social indicators</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability assessment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wulf, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baumann, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rösch, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weil, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zapp, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naegler, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy, Sustainability and Society</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">12(2022), 1 vom: 12. Mai</subfield><subfield code="w">(DE-627)679779221</subfield><subfield code="w">(DE-600)2641015-1</subfield><subfield code="x">2192-0567</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13705-022-00344-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Haase, M. |
spellingShingle |
Haase, M. misc Biomass misc Energy storage misc Hydrogen misc Life cycle assessment (LCA) misc Life cycle costing (LCC) misc Social indicators misc Sustainability assessment Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment |
authorStr |
Haase, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)679779221 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2192-0567 |
topic_title |
Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment Biomass (dpeaa)DE-He213 Energy storage (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Life cycle assessment (LCA) (dpeaa)DE-He213 Life cycle costing (LCC) (dpeaa)DE-He213 Social indicators (dpeaa)DE-He213 Sustainability assessment (dpeaa)DE-He213 |
topic |
misc Biomass misc Energy storage misc Hydrogen misc Life cycle assessment (LCA) misc Life cycle costing (LCC) misc Social indicators misc Sustainability assessment |
topic_unstemmed |
misc Biomass misc Energy storage misc Hydrogen misc Life cycle assessment (LCA) misc Life cycle costing (LCC) misc Social indicators misc Sustainability assessment |
topic_browse |
misc Biomass misc Energy storage misc Hydrogen misc Life cycle assessment (LCA) misc Life cycle costing (LCC) misc Social indicators misc Sustainability assessment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy, Sustainability and Society |
hierarchy_parent_id |
679779221 |
hierarchy_top_title |
Energy, Sustainability and Society |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)679779221 (DE-600)2641015-1 |
title |
Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment |
ctrlnum |
(DE-627)SPR046981454 (SPR)s13705-022-00344-6-e |
title_full |
Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment |
author_sort |
Haase, M. |
journal |
Energy, Sustainability and Society |
journalStr |
Energy, Sustainability and Society |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Haase, M. Wulf, C. Baumann, M. Rösch, C. Weil, M. Zapp, P. Naegler, T. |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Haase, M. |
doi_str_mv |
10.1186/s13705-022-00344-6 |
normlink |
(ORCID)0000-0002-9098-3930 |
normlink_prefix_str_mv |
(orcid)0000-0002-9098-3930 |
title_sort |
prospective assessment of energy technologies: a comprehensive approach for sustainability assessment |
title_auth |
Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment |
abstract |
Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. © The Author(s) 2022 |
abstractGer |
Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. © The Author(s) 2022 |
abstract_unstemmed |
Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment |
url |
https://dx.doi.org/10.1186/s13705-022-00344-6 |
remote_bool |
true |
author2 |
Wulf, C. Baumann, M. Rösch, C. Weil, M. Zapp, P. Naegler, T. |
author2Str |
Wulf, C. Baumann, M. Rösch, C. Weil, M. Zapp, P. Naegler, T. |
ppnlink |
679779221 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13705-022-00344-6 |
up_date |
2024-07-04T01:19:17.140Z |
_version_ |
1803609395318226944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR046981454</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507180624.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220513s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13705-022-00344-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR046981454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13705-022-00344-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haase, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9098-3930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life cycle assessment (LCA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life cycle costing (LCC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social indicators</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability assessment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wulf, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baumann, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rösch, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weil, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zapp, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naegler, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy, Sustainability and Society</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">12(2022), 1 vom: 12. Mai</subfield><subfield code="w">(DE-627)679779221</subfield><subfield code="w">(DE-600)2641015-1</subfield><subfield code="x">2192-0567</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13705-022-00344-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.4026117 |