Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal
Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (P...
Ausführliche Beschreibung
Autor*in: |
Shi, Sheng-bo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and experimental plant physiology - Berlin : Springer, 2014, 34(2022), 2 vom: 07. Apr., Seite 197-214 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2022 ; number:2 ; day:07 ; month:04 ; pages:197-214 |
Links: |
---|
DOI / URN: |
10.1007/s40626-022-00242-4 |
---|
Katalog-ID: |
SPR047018860 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047018860 | ||
003 | DE-627 | ||
005 | 20230507183414.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220517s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40626-022-00242-4 |2 doi | |
035 | |a (DE-627)SPR047018860 | ||
035 | |a (SPR)s40626-022-00242-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Shi, Sheng-bo |e verfasserin |0 (orcid)0000-0002-1849-7292 |4 aut | |
245 | 1 | 0 | |a Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. | ||
650 | 4 | |a Arid desert areas |7 (dpeaa)DE-He213 | |
650 | 4 | |a Non-photochemical quenching |7 (dpeaa)DE-He213 | |
650 | 4 | |a PSII photochemical efficiency |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sediment-carrying wind |7 (dpeaa)DE-He213 | |
650 | 4 | |a Self-renewal |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhou, Dang-wei |4 aut | |
700 | 1 | |a Wang, Fang-lin |4 aut | |
700 | 1 | |a Shi, Rui |4 aut | |
700 | 1 | |a Sun, Tao |4 aut | |
700 | 1 | |a Li, Tian-cai |4 aut | |
700 | 1 | |a Ma, Jia-lin |4 aut | |
700 | 1 | |a Wan, Xiang |4 aut | |
700 | 1 | |a Ma, Jian-ping |4 aut | |
700 | 1 | |a Tang, Jing-nian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and experimental plant physiology |d Berlin : Springer, 2014 |g 34(2022), 2 vom: 07. Apr., Seite 197-214 |w (DE-627)790227800 |w (DE-600)2776145-9 |x 2197-0025 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2022 |g number:2 |g day:07 |g month:04 |g pages:197-214 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40626-022-00242-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 34 |j 2022 |e 2 |b 07 |c 04 |h 197-214 |
author_variant |
s b s sbs d w z dwz f l w flw r s rs t s ts t c l tcl j l m jlm x w xw j p m jpm j n t jnt |
---|---|
matchkey_str |
article:21970025:2022----::adtrsassrnaefaoyoamdnrnhusnl |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40626-022-00242-4 doi (DE-627)SPR047018860 (SPR)s40626-022-00242-4-e DE-627 ger DE-627 rakwb eng Shi, Sheng-bo verfasserin (orcid)0000-0002-1849-7292 aut Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. Arid desert areas (dpeaa)DE-He213 Non-photochemical quenching (dpeaa)DE-He213 PSII photochemical efficiency (dpeaa)DE-He213 Sediment-carrying wind (dpeaa)DE-He213 Self-renewal (dpeaa)DE-He213 Zhou, Dang-wei aut Wang, Fang-lin aut Shi, Rui aut Sun, Tao aut Li, Tian-cai aut Ma, Jia-lin aut Wan, Xiang aut Ma, Jian-ping aut Tang, Jing-nian aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 34(2022), 2 vom: 07. Apr., Seite 197-214 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:34 year:2022 number:2 day:07 month:04 pages:197-214 https://dx.doi.org/10.1007/s40626-022-00242-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 2 07 04 197-214 |
spelling |
10.1007/s40626-022-00242-4 doi (DE-627)SPR047018860 (SPR)s40626-022-00242-4-e DE-627 ger DE-627 rakwb eng Shi, Sheng-bo verfasserin (orcid)0000-0002-1849-7292 aut Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. Arid desert areas (dpeaa)DE-He213 Non-photochemical quenching (dpeaa)DE-He213 PSII photochemical efficiency (dpeaa)DE-He213 Sediment-carrying wind (dpeaa)DE-He213 Self-renewal (dpeaa)DE-He213 Zhou, Dang-wei aut Wang, Fang-lin aut Shi, Rui aut Sun, Tao aut Li, Tian-cai aut Ma, Jia-lin aut Wan, Xiang aut Ma, Jian-ping aut Tang, Jing-nian aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 34(2022), 2 vom: 07. Apr., Seite 197-214 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:34 year:2022 number:2 day:07 month:04 pages:197-214 https://dx.doi.org/10.1007/s40626-022-00242-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 2 07 04 197-214 |
allfields_unstemmed |
10.1007/s40626-022-00242-4 doi (DE-627)SPR047018860 (SPR)s40626-022-00242-4-e DE-627 ger DE-627 rakwb eng Shi, Sheng-bo verfasserin (orcid)0000-0002-1849-7292 aut Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. Arid desert areas (dpeaa)DE-He213 Non-photochemical quenching (dpeaa)DE-He213 PSII photochemical efficiency (dpeaa)DE-He213 Sediment-carrying wind (dpeaa)DE-He213 Self-renewal (dpeaa)DE-He213 Zhou, Dang-wei aut Wang, Fang-lin aut Shi, Rui aut Sun, Tao aut Li, Tian-cai aut Ma, Jia-lin aut Wan, Xiang aut Ma, Jian-ping aut Tang, Jing-nian aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 34(2022), 2 vom: 07. Apr., Seite 197-214 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:34 year:2022 number:2 day:07 month:04 pages:197-214 https://dx.doi.org/10.1007/s40626-022-00242-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 2 07 04 197-214 |
allfieldsGer |
10.1007/s40626-022-00242-4 doi (DE-627)SPR047018860 (SPR)s40626-022-00242-4-e DE-627 ger DE-627 rakwb eng Shi, Sheng-bo verfasserin (orcid)0000-0002-1849-7292 aut Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. Arid desert areas (dpeaa)DE-He213 Non-photochemical quenching (dpeaa)DE-He213 PSII photochemical efficiency (dpeaa)DE-He213 Sediment-carrying wind (dpeaa)DE-He213 Self-renewal (dpeaa)DE-He213 Zhou, Dang-wei aut Wang, Fang-lin aut Shi, Rui aut Sun, Tao aut Li, Tian-cai aut Ma, Jia-lin aut Wan, Xiang aut Ma, Jian-ping aut Tang, Jing-nian aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 34(2022), 2 vom: 07. Apr., Seite 197-214 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:34 year:2022 number:2 day:07 month:04 pages:197-214 https://dx.doi.org/10.1007/s40626-022-00242-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 2 07 04 197-214 |
allfieldsSound |
10.1007/s40626-022-00242-4 doi (DE-627)SPR047018860 (SPR)s40626-022-00242-4-e DE-627 ger DE-627 rakwb eng Shi, Sheng-bo verfasserin (orcid)0000-0002-1849-7292 aut Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. Arid desert areas (dpeaa)DE-He213 Non-photochemical quenching (dpeaa)DE-He213 PSII photochemical efficiency (dpeaa)DE-He213 Sediment-carrying wind (dpeaa)DE-He213 Self-renewal (dpeaa)DE-He213 Zhou, Dang-wei aut Wang, Fang-lin aut Shi, Rui aut Sun, Tao aut Li, Tian-cai aut Ma, Jia-lin aut Wan, Xiang aut Ma, Jian-ping aut Tang, Jing-nian aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 34(2022), 2 vom: 07. Apr., Seite 197-214 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:34 year:2022 number:2 day:07 month:04 pages:197-214 https://dx.doi.org/10.1007/s40626-022-00242-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 34 2022 2 07 04 197-214 |
language |
English |
source |
Enthalten in Theoretical and experimental plant physiology 34(2022), 2 vom: 07. Apr., Seite 197-214 volume:34 year:2022 number:2 day:07 month:04 pages:197-214 |
sourceStr |
Enthalten in Theoretical and experimental plant physiology 34(2022), 2 vom: 07. Apr., Seite 197-214 volume:34 year:2022 number:2 day:07 month:04 pages:197-214 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Arid desert areas Non-photochemical quenching PSII photochemical efficiency Sediment-carrying wind Self-renewal |
isfreeaccess_bool |
true |
container_title |
Theoretical and experimental plant physiology |
authorswithroles_txt_mv |
Shi, Sheng-bo @@aut@@ Zhou, Dang-wei @@aut@@ Wang, Fang-lin @@aut@@ Shi, Rui @@aut@@ Sun, Tao @@aut@@ Li, Tian-cai @@aut@@ Ma, Jia-lin @@aut@@ Wan, Xiang @@aut@@ Ma, Jian-ping @@aut@@ Tang, Jing-nian @@aut@@ |
publishDateDaySort_date |
2022-04-07T00:00:00Z |
hierarchy_top_id |
790227800 |
id |
SPR047018860 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047018860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507183414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220517s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40626-022-00242-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047018860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40626-022-00242-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Sheng-bo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1849-7292</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arid desert areas</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-photochemical quenching</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSII photochemical efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sediment-carrying wind</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-renewal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Dang-wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Fang-lin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Tao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tian-cai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Jia-lin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Jian-ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jing-nian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and experimental plant physiology</subfield><subfield code="d">Berlin : Springer, 2014</subfield><subfield code="g">34(2022), 2 vom: 07. Apr., Seite 197-214</subfield><subfield code="w">(DE-627)790227800</subfield><subfield code="w">(DE-600)2776145-9</subfield><subfield code="x">2197-0025</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:07</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:197-214</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40626-022-00242-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">07</subfield><subfield code="c">04</subfield><subfield code="h">197-214</subfield></datafield></record></collection>
|
author |
Shi, Sheng-bo |
spellingShingle |
Shi, Sheng-bo misc Arid desert areas misc Non-photochemical quenching misc PSII photochemical efficiency misc Sediment-carrying wind misc Self-renewal Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal |
authorStr |
Shi, Sheng-bo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)790227800 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2197-0025 |
topic_title |
Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal Arid desert areas (dpeaa)DE-He213 Non-photochemical quenching (dpeaa)DE-He213 PSII photochemical efficiency (dpeaa)DE-He213 Sediment-carrying wind (dpeaa)DE-He213 Self-renewal (dpeaa)DE-He213 |
topic |
misc Arid desert areas misc Non-photochemical quenching misc PSII photochemical efficiency misc Sediment-carrying wind misc Self-renewal |
topic_unstemmed |
misc Arid desert areas misc Non-photochemical quenching misc PSII photochemical efficiency misc Sediment-carrying wind misc Self-renewal |
topic_browse |
misc Arid desert areas misc Non-photochemical quenching misc PSII photochemical efficiency misc Sediment-carrying wind misc Self-renewal |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Theoretical and experimental plant physiology |
hierarchy_parent_id |
790227800 |
hierarchy_top_title |
Theoretical and experimental plant physiology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)790227800 (DE-600)2776145-9 |
title |
Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal |
ctrlnum |
(DE-627)SPR047018860 (SPR)s40626-022-00242-4-e |
title_full |
Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal |
author_sort |
Shi, Sheng-bo |
journal |
Theoretical and experimental plant physiology |
journalStr |
Theoretical and experimental plant physiology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
197 |
author_browse |
Shi, Sheng-bo Zhou, Dang-wei Wang, Fang-lin Shi, Rui Sun, Tao Li, Tian-cai Ma, Jia-lin Wan, Xiang Ma, Jian-ping Tang, Jing-nian |
container_volume |
34 |
format_se |
Elektronische Aufsätze |
author-letter |
Shi, Sheng-bo |
doi_str_mv |
10.1007/s40626-022-00242-4 |
normlink |
(ORCID)0000-0002-1849-7292 |
normlink_prefix_str_mv |
(orcid)0000-0002-1849-7292 |
title_sort |
sandstorms cause shrinkage of haloxylon ammodendron shrubs and limit their self-renewal |
title_auth |
Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal |
abstract |
Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. © The Author(s) 2022 |
abstractGer |
Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal |
url |
https://dx.doi.org/10.1007/s40626-022-00242-4 |
remote_bool |
true |
author2 |
Zhou, Dang-wei Wang, Fang-lin Shi, Rui Sun, Tao Li, Tian-cai Ma, Jia-lin Wan, Xiang Ma, Jian-ping Tang, Jing-nian |
author2Str |
Zhou, Dang-wei Wang, Fang-lin Shi, Rui Sun, Tao Li, Tian-cai Ma, Jia-lin Wan, Xiang Ma, Jian-ping Tang, Jing-nian |
ppnlink |
790227800 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40626-022-00242-4 |
up_date |
2024-07-04T01:29:40.822Z |
_version_ |
1803610049304592384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047018860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507183414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220517s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40626-022-00242-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047018860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40626-022-00242-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Sheng-bo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1849-7292</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sandstorms cause shrinkage of Haloxylon ammodendron shrubs and limit their self-renewal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Haloxylon ammodendron is an excellent windproof and sand-fixing species whose shrubs are widely cultivated in arid desert areas of northwest China but are now at risk of degradation and shrinkage. Using the chlorophyll fluorescence image analysis technique, the response of photosystem II (PSII) photochemical efficiency and non-photochemical quenching capacity to sediment-carrying wind and sand-free wind (both 12 m $ s^{−1} $) lasting for 10, 20, and 40 min were studied with seedlings in a wind tunnel. The results indicated that the sand-free wind had little influence on the maximum quantum efficiency of PSII photochemistry, Fv/Fm, which was approximately 0.80 on average; however, the Fv/Fm decreased over exposure time in the sediment-carrying wind group, with values smaller than those in the wind-only group. The non-photochemical quenching was sensitive to wind erosion, and sediment-carrying wind could aggravate the reduction in non-photochemical quenching (NPQ). Except for the 10 min duration, the maximum quantum efficiency of PSII photochemistry after dark recovery for 15 min, Fvr/Fmr, was lower in seedlings exposed to sediment-carrying wind than in those in the wind-only group. Compared to wind-only, wind-blown sand led to a water imbalance and withering in seedlings, causing the concentration of photosynthetic pigments (when based on the fresh mass of green branches) to not decrease. With a longer exposure time to sediment-carrying wind, both the probability and extent of lignified spots occurring increased in green assimilative branches. Our results demonstrated that sediment-carrying wind at 12 m $ s^{−1} $ lasting for 20 min or more could cause irreversible damage to the photosynthetic apparatus of H. ammodendron seedlings. Therefore, frequent and strong sandstorms are the main disturbance factors leading to shrinkage of shrubs and limiting their self-renewal.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arid desert areas</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-photochemical quenching</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSII photochemical efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sediment-carrying wind</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-renewal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Dang-wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Fang-lin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Tao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tian-cai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Jia-lin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Jian-ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jing-nian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and experimental plant physiology</subfield><subfield code="d">Berlin : Springer, 2014</subfield><subfield code="g">34(2022), 2 vom: 07. Apr., Seite 197-214</subfield><subfield code="w">(DE-627)790227800</subfield><subfield code="w">(DE-600)2776145-9</subfield><subfield code="x">2197-0025</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:07</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:197-214</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40626-022-00242-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">07</subfield><subfield code="c">04</subfield><subfield code="h">197-214</subfield></datafield></record></collection>
|
score |
7.4018335 |