An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting
Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan)....
Ausführliche Beschreibung
Autor*in: |
Huang, I.-Hang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Stochastic environmental research and risk assessment - Berlin : Springer, 1987, 36(2021), 6 vom: 04. Sept., Seite 1541-1561 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2021 ; number:6 ; day:04 ; month:09 ; pages:1541-1561 |
Links: |
---|
DOI / URN: |
10.1007/s00477-021-02085-y |
---|
Katalog-ID: |
SPR047033193 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047033193 | ||
003 | DE-627 | ||
005 | 20230507184722.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220519s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00477-021-02085-y |2 doi | |
035 | |a (DE-627)SPR047033193 | ||
035 | |a (SPR)s00477-021-02085-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Huang, I.-Hang |e verfasserin |4 aut | |
245 | 1 | 3 | |a An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. | ||
650 | 4 | |a Reservoir inflow forecasting |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ensemble forecasting |7 (dpeaa)DE-He213 | |
650 | 4 | |a Machine learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deep learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Switched prediction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chang, Ming-Jui |4 aut | |
700 | 1 | |a Lin, Gwo-Fong |0 (orcid)0000-0003-3788-8085 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Stochastic environmental research and risk assessment |d Berlin : Springer, 1987 |g 36(2021), 6 vom: 04. Sept., Seite 1541-1561 |w (DE-627)27160235X |w (DE-600)1481263-0 |x 1436-3259 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2021 |g number:6 |g day:04 |g month:09 |g pages:1541-1561 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00477-021-02085-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 36 |j 2021 |e 6 |b 04 |c 09 |h 1541-1561 |
author_variant |
i h h ihh m j c mjc g f l gfl |
---|---|
matchkey_str |
article:14363259:2021----::npiaitgainfutpeahnlanntcnqetratmr |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00477-021-02085-y doi (DE-627)SPR047033193 (SPR)s00477-021-02085-y-e DE-627 ger DE-627 rakwb eng Huang, I.-Hang verfasserin aut An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. Reservoir inflow forecasting (dpeaa)DE-He213 Ensemble forecasting (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Switched prediction (dpeaa)DE-He213 Chang, Ming-Jui aut Lin, Gwo-Fong (orcid)0000-0003-3788-8085 aut Enthalten in Stochastic environmental research and risk assessment Berlin : Springer, 1987 36(2021), 6 vom: 04. Sept., Seite 1541-1561 (DE-627)27160235X (DE-600)1481263-0 1436-3259 nnns volume:36 year:2021 number:6 day:04 month:09 pages:1541-1561 https://dx.doi.org/10.1007/s00477-021-02085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2021 6 04 09 1541-1561 |
spelling |
10.1007/s00477-021-02085-y doi (DE-627)SPR047033193 (SPR)s00477-021-02085-y-e DE-627 ger DE-627 rakwb eng Huang, I.-Hang verfasserin aut An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. Reservoir inflow forecasting (dpeaa)DE-He213 Ensemble forecasting (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Switched prediction (dpeaa)DE-He213 Chang, Ming-Jui aut Lin, Gwo-Fong (orcid)0000-0003-3788-8085 aut Enthalten in Stochastic environmental research and risk assessment Berlin : Springer, 1987 36(2021), 6 vom: 04. Sept., Seite 1541-1561 (DE-627)27160235X (DE-600)1481263-0 1436-3259 nnns volume:36 year:2021 number:6 day:04 month:09 pages:1541-1561 https://dx.doi.org/10.1007/s00477-021-02085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2021 6 04 09 1541-1561 |
allfields_unstemmed |
10.1007/s00477-021-02085-y doi (DE-627)SPR047033193 (SPR)s00477-021-02085-y-e DE-627 ger DE-627 rakwb eng Huang, I.-Hang verfasserin aut An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. Reservoir inflow forecasting (dpeaa)DE-He213 Ensemble forecasting (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Switched prediction (dpeaa)DE-He213 Chang, Ming-Jui aut Lin, Gwo-Fong (orcid)0000-0003-3788-8085 aut Enthalten in Stochastic environmental research and risk assessment Berlin : Springer, 1987 36(2021), 6 vom: 04. Sept., Seite 1541-1561 (DE-627)27160235X (DE-600)1481263-0 1436-3259 nnns volume:36 year:2021 number:6 day:04 month:09 pages:1541-1561 https://dx.doi.org/10.1007/s00477-021-02085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2021 6 04 09 1541-1561 |
allfieldsGer |
10.1007/s00477-021-02085-y doi (DE-627)SPR047033193 (SPR)s00477-021-02085-y-e DE-627 ger DE-627 rakwb eng Huang, I.-Hang verfasserin aut An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. Reservoir inflow forecasting (dpeaa)DE-He213 Ensemble forecasting (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Switched prediction (dpeaa)DE-He213 Chang, Ming-Jui aut Lin, Gwo-Fong (orcid)0000-0003-3788-8085 aut Enthalten in Stochastic environmental research and risk assessment Berlin : Springer, 1987 36(2021), 6 vom: 04. Sept., Seite 1541-1561 (DE-627)27160235X (DE-600)1481263-0 1436-3259 nnns volume:36 year:2021 number:6 day:04 month:09 pages:1541-1561 https://dx.doi.org/10.1007/s00477-021-02085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2021 6 04 09 1541-1561 |
allfieldsSound |
10.1007/s00477-021-02085-y doi (DE-627)SPR047033193 (SPR)s00477-021-02085-y-e DE-627 ger DE-627 rakwb eng Huang, I.-Hang verfasserin aut An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. Reservoir inflow forecasting (dpeaa)DE-He213 Ensemble forecasting (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Switched prediction (dpeaa)DE-He213 Chang, Ming-Jui aut Lin, Gwo-Fong (orcid)0000-0003-3788-8085 aut Enthalten in Stochastic environmental research and risk assessment Berlin : Springer, 1987 36(2021), 6 vom: 04. Sept., Seite 1541-1561 (DE-627)27160235X (DE-600)1481263-0 1436-3259 nnns volume:36 year:2021 number:6 day:04 month:09 pages:1541-1561 https://dx.doi.org/10.1007/s00477-021-02085-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 36 2021 6 04 09 1541-1561 |
language |
English |
source |
Enthalten in Stochastic environmental research and risk assessment 36(2021), 6 vom: 04. Sept., Seite 1541-1561 volume:36 year:2021 number:6 day:04 month:09 pages:1541-1561 |
sourceStr |
Enthalten in Stochastic environmental research and risk assessment 36(2021), 6 vom: 04. Sept., Seite 1541-1561 volume:36 year:2021 number:6 day:04 month:09 pages:1541-1561 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Reservoir inflow forecasting Ensemble forecasting Machine learning Deep learning Switched prediction |
isfreeaccess_bool |
false |
container_title |
Stochastic environmental research and risk assessment |
authorswithroles_txt_mv |
Huang, I.-Hang @@aut@@ Chang, Ming-Jui @@aut@@ Lin, Gwo-Fong @@aut@@ |
publishDateDaySort_date |
2021-09-04T00:00:00Z |
hierarchy_top_id |
27160235X |
id |
SPR047033193 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047033193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507184722.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220519s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00477-021-02085-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047033193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00477-021-02085-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, I.-Hang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir inflow forecasting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble forecasting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switched prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Ming-Jui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Gwo-Fong</subfield><subfield code="0">(orcid)0000-0003-3788-8085</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Stochastic environmental research and risk assessment</subfield><subfield code="d">Berlin : Springer, 1987</subfield><subfield code="g">36(2021), 6 vom: 04. Sept., Seite 1541-1561</subfield><subfield code="w">(DE-627)27160235X</subfield><subfield code="w">(DE-600)1481263-0</subfield><subfield code="x">1436-3259</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">day:04</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1541-1561</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00477-021-02085-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="b">04</subfield><subfield code="c">09</subfield><subfield code="h">1541-1561</subfield></datafield></record></collection>
|
author |
Huang, I.-Hang |
spellingShingle |
Huang, I.-Hang misc Reservoir inflow forecasting misc Ensemble forecasting misc Machine learning misc Deep learning misc Switched prediction An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting |
authorStr |
Huang, I.-Hang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)27160235X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1436-3259 |
topic_title |
An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting Reservoir inflow forecasting (dpeaa)DE-He213 Ensemble forecasting (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Switched prediction (dpeaa)DE-He213 |
topic |
misc Reservoir inflow forecasting misc Ensemble forecasting misc Machine learning misc Deep learning misc Switched prediction |
topic_unstemmed |
misc Reservoir inflow forecasting misc Ensemble forecasting misc Machine learning misc Deep learning misc Switched prediction |
topic_browse |
misc Reservoir inflow forecasting misc Ensemble forecasting misc Machine learning misc Deep learning misc Switched prediction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Stochastic environmental research and risk assessment |
hierarchy_parent_id |
27160235X |
hierarchy_top_title |
Stochastic environmental research and risk assessment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)27160235X (DE-600)1481263-0 |
title |
An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting |
ctrlnum |
(DE-627)SPR047033193 (SPR)s00477-021-02085-y-e |
title_full |
An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting |
author_sort |
Huang, I.-Hang |
journal |
Stochastic environmental research and risk assessment |
journalStr |
Stochastic environmental research and risk assessment |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1541 |
author_browse |
Huang, I.-Hang Chang, Ming-Jui Lin, Gwo-Fong |
container_volume |
36 |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, I.-Hang |
doi_str_mv |
10.1007/s00477-021-02085-y |
normlink |
(ORCID)0000-0003-3788-8085 |
normlink_prefix_str_mv |
(orcid)0000-0003-3788-8085 |
title_sort |
optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting |
title_auth |
An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting |
abstract |
Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting |
url |
https://dx.doi.org/10.1007/s00477-021-02085-y |
remote_bool |
true |
author2 |
Chang, Ming-Jui Lin, Gwo-Fong |
author2Str |
Chang, Ming-Jui Lin, Gwo-Fong |
ppnlink |
27160235X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00477-021-02085-y |
up_date |
2024-07-04T01:33:45.180Z |
_version_ |
1803610305525186560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047033193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507184722.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220519s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00477-021-02085-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047033193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00477-021-02085-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, I.-Hang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An optimal integration of multiple machine learning techniques to real-time reservoir inflow forecasting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A reservoir inflow forecasting system represents a crucial technique in reservoir operation and disaster prevention, particularly in areas where the primary water source derives from typhoon events. This includes the study area of the current research, i.e., the Shihmen Reservoir (Taiwan). Effectively depositing short and high-intensity rainfall and avoiding disaster losses present significant challenges in this regard. However, the high variability and uncertainty of such rainfall events make them difficult to forecast using traditional physical-based models, which require too many calculations for application in real-time disaster forecasting. Accordingly, in this study, seven machine learning (ML) algorithms, including three conventional ML and four deep learning algorithms, were compared to derive their effectiveness for reservoir inflow forecasting in extreme weather events. The forecasting lead-times were set to 1, 4, and 6-h, representing short, medium, and long-term forecasting, respectively. Moreover, to ensure the stability and credibility of the models, two types of integrated approaches, ensemble means and switched prediction method (SP) were also employed. The results showed that although an optimal algorithm could be selected for the short, medium, and long-term, individual algorithms did not always perform well in all events. Nonetheless, the integrated approaches can effectively combine the advantages of all the included algorithms and generate more accurate and stable forecasting results, particularly when using SP, which was involved in the top three performances among all typhoon examples and indicated the best average performance. In the short-term forecast, the RMSE of the testing events is 107.2 $ m^{3} $/s while using SP, ranking 3rd among all 9 methods. In the medium-term forecast, the RMSE predicted by the SP is 281.72 $ m^{3} $/s (Rank = 1). In the long-term forecast, the SP also performed the best among the 9 methods, and the RMSE was 477.14 $ m^{3} $/s. In conclusion, if only single model forecast is considered, gated recurrent unit, a type of transformed recurrent neural network, will yield the best performance. Furthermore, integrated forecasts, particularly involving SP, can effectively improve the accuracy and stability of forecasts to render a model more applicable to an actual situation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir inflow forecasting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble forecasting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switched prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Ming-Jui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Gwo-Fong</subfield><subfield code="0">(orcid)0000-0003-3788-8085</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Stochastic environmental research and risk assessment</subfield><subfield code="d">Berlin : Springer, 1987</subfield><subfield code="g">36(2021), 6 vom: 04. Sept., Seite 1541-1561</subfield><subfield code="w">(DE-627)27160235X</subfield><subfield code="w">(DE-600)1481263-0</subfield><subfield code="x">1436-3259</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">day:04</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1541-1561</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00477-021-02085-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="b">04</subfield><subfield code="c">09</subfield><subfield code="h">1541-1561</subfield></datafield></record></collection>
|
score |
7.401598 |