Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article
Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functio...
Ausführliche Beschreibung
Autor*in: |
Feres, Carolina Cristina Pellegrino [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Clinical and translational imaging - Berlin : Springer Milan, 2013, 10(2022), 3 vom: 02. Feb., Seite 273-284 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:3 ; day:02 ; month:02 ; pages:273-284 |
Links: |
---|
DOI / URN: |
10.1007/s40336-022-00481-0 |
---|
Katalog-ID: |
SPR04715506X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04715506X | ||
003 | DE-627 | ||
005 | 20230507194156.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220601s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40336-022-00481-0 |2 doi | |
035 | |a (DE-627)SPR04715506X | ||
035 | |a (SPR)s40336-022-00481-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Feres, Carolina Cristina Pellegrino |e verfasserin |0 (orcid)0000-0001-9267-0930 |4 aut | |
245 | 1 | 0 | |a Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 | ||
520 | |a Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. | ||
650 | 4 | |a FDG-PET |7 (dpeaa)DE-He213 | |
650 | 4 | |a Total metabolic tumor volume |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hodgkin lymphoma |7 (dpeaa)DE-He213 | |
700 | 1 | |a Nunes, Rafael Fernandes |4 aut | |
700 | 1 | |a Teixeira, Larissa Lane Cardoso |4 aut | |
700 | 1 | |a Arcuri, Leonardo Javier |4 aut | |
700 | 1 | |a Perini, Guilherme Fleury |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Clinical and translational imaging |d Berlin : Springer Milan, 2013 |g 10(2022), 3 vom: 02. Feb., Seite 273-284 |w (DE-627)742738752 |w (DE-600)2712000-4 |x 2281-7565 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:3 |g day:02 |g month:02 |g pages:273-284 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40336-022-00481-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 3 |b 02 |c 02 |h 273-284 |
author_variant |
c c p f ccp ccpf r f n rf rfn l l c t llc llct l j a lj lja g f p gf gfp |
---|---|
matchkey_str |
article:22817565:2022----::aeieoamtblcuovlmttapiainnogi |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40336-022-00481-0 doi (DE-627)SPR04715506X (SPR)s40336-022-00481-0-e DE-627 ger DE-627 rakwb eng Feres, Carolina Cristina Pellegrino verfasserin (orcid)0000-0001-9267-0930 aut Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. FDG-PET (dpeaa)DE-He213 Total metabolic tumor volume (dpeaa)DE-He213 Hodgkin lymphoma (dpeaa)DE-He213 Nunes, Rafael Fernandes aut Teixeira, Larissa Lane Cardoso aut Arcuri, Leonardo Javier aut Perini, Guilherme Fleury aut Enthalten in Clinical and translational imaging Berlin : Springer Milan, 2013 10(2022), 3 vom: 02. Feb., Seite 273-284 (DE-627)742738752 (DE-600)2712000-4 2281-7565 nnns volume:10 year:2022 number:3 day:02 month:02 pages:273-284 https://dx.doi.org/10.1007/s40336-022-00481-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2022 3 02 02 273-284 |
spelling |
10.1007/s40336-022-00481-0 doi (DE-627)SPR04715506X (SPR)s40336-022-00481-0-e DE-627 ger DE-627 rakwb eng Feres, Carolina Cristina Pellegrino verfasserin (orcid)0000-0001-9267-0930 aut Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. FDG-PET (dpeaa)DE-He213 Total metabolic tumor volume (dpeaa)DE-He213 Hodgkin lymphoma (dpeaa)DE-He213 Nunes, Rafael Fernandes aut Teixeira, Larissa Lane Cardoso aut Arcuri, Leonardo Javier aut Perini, Guilherme Fleury aut Enthalten in Clinical and translational imaging Berlin : Springer Milan, 2013 10(2022), 3 vom: 02. Feb., Seite 273-284 (DE-627)742738752 (DE-600)2712000-4 2281-7565 nnns volume:10 year:2022 number:3 day:02 month:02 pages:273-284 https://dx.doi.org/10.1007/s40336-022-00481-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2022 3 02 02 273-284 |
allfields_unstemmed |
10.1007/s40336-022-00481-0 doi (DE-627)SPR04715506X (SPR)s40336-022-00481-0-e DE-627 ger DE-627 rakwb eng Feres, Carolina Cristina Pellegrino verfasserin (orcid)0000-0001-9267-0930 aut Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. FDG-PET (dpeaa)DE-He213 Total metabolic tumor volume (dpeaa)DE-He213 Hodgkin lymphoma (dpeaa)DE-He213 Nunes, Rafael Fernandes aut Teixeira, Larissa Lane Cardoso aut Arcuri, Leonardo Javier aut Perini, Guilherme Fleury aut Enthalten in Clinical and translational imaging Berlin : Springer Milan, 2013 10(2022), 3 vom: 02. Feb., Seite 273-284 (DE-627)742738752 (DE-600)2712000-4 2281-7565 nnns volume:10 year:2022 number:3 day:02 month:02 pages:273-284 https://dx.doi.org/10.1007/s40336-022-00481-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2022 3 02 02 273-284 |
allfieldsGer |
10.1007/s40336-022-00481-0 doi (DE-627)SPR04715506X (SPR)s40336-022-00481-0-e DE-627 ger DE-627 rakwb eng Feres, Carolina Cristina Pellegrino verfasserin (orcid)0000-0001-9267-0930 aut Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. FDG-PET (dpeaa)DE-He213 Total metabolic tumor volume (dpeaa)DE-He213 Hodgkin lymphoma (dpeaa)DE-He213 Nunes, Rafael Fernandes aut Teixeira, Larissa Lane Cardoso aut Arcuri, Leonardo Javier aut Perini, Guilherme Fleury aut Enthalten in Clinical and translational imaging Berlin : Springer Milan, 2013 10(2022), 3 vom: 02. Feb., Seite 273-284 (DE-627)742738752 (DE-600)2712000-4 2281-7565 nnns volume:10 year:2022 number:3 day:02 month:02 pages:273-284 https://dx.doi.org/10.1007/s40336-022-00481-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2022 3 02 02 273-284 |
allfieldsSound |
10.1007/s40336-022-00481-0 doi (DE-627)SPR04715506X (SPR)s40336-022-00481-0-e DE-627 ger DE-627 rakwb eng Feres, Carolina Cristina Pellegrino verfasserin (orcid)0000-0001-9267-0930 aut Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. FDG-PET (dpeaa)DE-He213 Total metabolic tumor volume (dpeaa)DE-He213 Hodgkin lymphoma (dpeaa)DE-He213 Nunes, Rafael Fernandes aut Teixeira, Larissa Lane Cardoso aut Arcuri, Leonardo Javier aut Perini, Guilherme Fleury aut Enthalten in Clinical and translational imaging Berlin : Springer Milan, 2013 10(2022), 3 vom: 02. Feb., Seite 273-284 (DE-627)742738752 (DE-600)2712000-4 2281-7565 nnns volume:10 year:2022 number:3 day:02 month:02 pages:273-284 https://dx.doi.org/10.1007/s40336-022-00481-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 10 2022 3 02 02 273-284 |
language |
English |
source |
Enthalten in Clinical and translational imaging 10(2022), 3 vom: 02. Feb., Seite 273-284 volume:10 year:2022 number:3 day:02 month:02 pages:273-284 |
sourceStr |
Enthalten in Clinical and translational imaging 10(2022), 3 vom: 02. Feb., Seite 273-284 volume:10 year:2022 number:3 day:02 month:02 pages:273-284 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
FDG-PET Total metabolic tumor volume Hodgkin lymphoma |
isfreeaccess_bool |
false |
container_title |
Clinical and translational imaging |
authorswithroles_txt_mv |
Feres, Carolina Cristina Pellegrino @@aut@@ Nunes, Rafael Fernandes @@aut@@ Teixeira, Larissa Lane Cardoso @@aut@@ Arcuri, Leonardo Javier @@aut@@ Perini, Guilherme Fleury @@aut@@ |
publishDateDaySort_date |
2022-02-02T00:00:00Z |
hierarchy_top_id |
742738752 |
id |
SPR04715506X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04715506X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507194156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220601s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40336-022-00481-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04715506X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40336-022-00481-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feres, Carolina Cristina Pellegrino</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9267-0930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FDG-PET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total metabolic tumor volume</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hodgkin lymphoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nunes, Rafael Fernandes</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teixeira, Larissa Lane Cardoso</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arcuri, Leonardo Javier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perini, Guilherme Fleury</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clinical and translational imaging</subfield><subfield code="d">Berlin : Springer Milan, 2013</subfield><subfield code="g">10(2022), 3 vom: 02. Feb., Seite 273-284</subfield><subfield code="w">(DE-627)742738752</subfield><subfield code="w">(DE-600)2712000-4</subfield><subfield code="x">2281-7565</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:02</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:273-284</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40336-022-00481-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">02</subfield><subfield code="c">02</subfield><subfield code="h">273-284</subfield></datafield></record></collection>
|
author |
Feres, Carolina Cristina Pellegrino |
spellingShingle |
Feres, Carolina Cristina Pellegrino misc FDG-PET misc Total metabolic tumor volume misc Hodgkin lymphoma Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article |
authorStr |
Feres, Carolina Cristina Pellegrino |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)742738752 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2281-7565 |
topic_title |
Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article FDG-PET (dpeaa)DE-He213 Total metabolic tumor volume (dpeaa)DE-He213 Hodgkin lymphoma (dpeaa)DE-He213 |
topic |
misc FDG-PET misc Total metabolic tumor volume misc Hodgkin lymphoma |
topic_unstemmed |
misc FDG-PET misc Total metabolic tumor volume misc Hodgkin lymphoma |
topic_browse |
misc FDG-PET misc Total metabolic tumor volume misc Hodgkin lymphoma |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Clinical and translational imaging |
hierarchy_parent_id |
742738752 |
hierarchy_top_title |
Clinical and translational imaging |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)742738752 (DE-600)2712000-4 |
title |
Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article |
ctrlnum |
(DE-627)SPR04715506X (SPR)s40336-022-00481-0-e |
title_full |
Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article |
author_sort |
Feres, Carolina Cristina Pellegrino |
journal |
Clinical and translational imaging |
journalStr |
Clinical and translational imaging |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
273 |
author_browse |
Feres, Carolina Cristina Pellegrino Nunes, Rafael Fernandes Teixeira, Larissa Lane Cardoso Arcuri, Leonardo Javier Perini, Guilherme Fleury |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Feres, Carolina Cristina Pellegrino |
doi_str_mv |
10.1007/s40336-022-00481-0 |
normlink |
(ORCID)0000-0001-9267-0930 |
normlink_prefix_str_mv |
(orcid)0000-0001-9267-0930 |
title_sort |
baseline total metabolic tumor volume (tmtv) application in hodgkin lymphoma: a review article |
title_auth |
Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article |
abstract |
Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 |
abstractGer |
Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 |
abstract_unstemmed |
Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL. © The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article |
url |
https://dx.doi.org/10.1007/s40336-022-00481-0 |
remote_bool |
true |
author2 |
Nunes, Rafael Fernandes Teixeira, Larissa Lane Cardoso Arcuri, Leonardo Javier Perini, Guilherme Fleury |
author2Str |
Nunes, Rafael Fernandes Teixeira, Larissa Lane Cardoso Arcuri, Leonardo Javier Perini, Guilherme Fleury |
ppnlink |
742738752 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40336-022-00481-0 |
up_date |
2024-07-04T02:05:49.984Z |
_version_ |
1803612323828465664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04715506X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507194156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220601s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40336-022-00481-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04715506X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40336-022-00481-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feres, Carolina Cristina Pellegrino</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9267-0930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Italian Association of Nuclear Medicine and Molecular Imaging 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction Functional metabolic imaging with 18 F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET/CT) is considered the gold standard for staging and response assessment in classical Hodgkin Lymphoma (cHL). Total metabolic tumor volume (TMTV) is a new functional and quantitative parameter extracted from the baseline PET/CT that has been reported as a strong predictor of outcome in HL. This review aims to describe the available methods used to perform TMTV calculation and discuss the reported published data and future direction about TMTV application in cHL. Methods A computerized search of PubMed was conducted to find relevant studies published regarding baseline TMTV in HL between 2010 and 2021. The following search terms were used: “{Hodgkin[title]} and {positron[title] or PET[title] or metabolic[title]) not “non-Hodgkin”[title]”. Twenty-six eligible studies were selected. We described and summarized the results in this review article. Results The optimal cut-off for predicting risk using TMTV depends on the selected TMTV segmentation method, population characteristics, and treatment. A high TMTV at baseline PET/CT was associated with worse progression-free survival (PFS) and overall survival (OS) in early-stage cHL. High baseline TMTV was also a predictor of treatment failure after autologous stem cell transplant in relapsed and/or refractory cHL. In advanced-stage HL treated with eBEACOPP protocol, there was no statistically significant association between high TMTV value and reduction in PFS or OS. In the pediatric population studies, a high baseline TMTV was associated with worse outcomes. Conclusion There is no agreement about which is the best method for TMTV segmentation; however, regardless of the chosen method, it may predict prognosis with comparable precision. Risk stratification using PET/CT quantitative parameters in addition to baseline clinical parameters could be a future direction in PET/CT tailored strategy in cHL.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FDG-PET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total metabolic tumor volume</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hodgkin lymphoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nunes, Rafael Fernandes</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teixeira, Larissa Lane Cardoso</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arcuri, Leonardo Javier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perini, Guilherme Fleury</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clinical and translational imaging</subfield><subfield code="d">Berlin : Springer Milan, 2013</subfield><subfield code="g">10(2022), 3 vom: 02. Feb., Seite 273-284</subfield><subfield code="w">(DE-627)742738752</subfield><subfield code="w">(DE-600)2712000-4</subfield><subfield code="x">2281-7565</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:02</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:273-284</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40336-022-00481-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">02</subfield><subfield code="c">02</subfield><subfield code="h">273-284</subfield></datafield></record></collection>
|
score |
7.4016075 |