Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process
Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additiv...
Ausführliche Beschreibung
Autor*in: |
Qi, Kai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© ASM International 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials engineering and performance - New York, NY : Springer, 1992, 31(2022), 6 vom: 08. Feb., Seite 4631-4641 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2022 ; number:6 ; day:08 ; month:02 ; pages:4631-4641 |
Links: |
---|
DOI / URN: |
10.1007/s11665-022-06587-w |
---|
Katalog-ID: |
SPR047171839 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047171839 | ||
003 | DE-627 | ||
005 | 20230507195252.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220603s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11665-022-06587-w |2 doi | |
035 | |a (DE-627)SPR047171839 | ||
035 | |a (SPR)s11665-022-06587-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Qi, Kai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © ASM International 2022 | ||
520 | |a Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract | ||
650 | 4 | |a 2205 duplex stainless steel |7 (dpeaa)DE-He213 | |
650 | 4 | |a cold metal transition wire and arc additive manufacturing |7 (dpeaa)DE-He213 | |
650 | 4 | |a forming mechanism |7 (dpeaa)DE-He213 | |
650 | 4 | |a microstructure and properties |7 (dpeaa)DE-He213 | |
650 | 4 | |a multi-layer multi-pass |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Ruifeng |4 aut | |
700 | 1 | |a Hu, Zhenxing |4 aut | |
700 | 1 | |a Bi, Xiaolin |4 aut | |
700 | 1 | |a Li, Taotao |4 aut | |
700 | 1 | |a Yue, Hangyu |4 aut | |
700 | 1 | |a Zhang, Baosen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials engineering and performance |d New York, NY : Springer, 1992 |g 31(2022), 6 vom: 08. Feb., Seite 4631-4641 |w (DE-627)329975447 |w (DE-600)2048384-3 |x 1544-1024 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2022 |g number:6 |g day:08 |g month:02 |g pages:4631-4641 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11665-022-06587-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 31 |j 2022 |e 6 |b 08 |c 02 |h 4631-4641 |
author_variant |
k q kq r l rl z h zh x b xb t l tl h y hy b z bz |
---|---|
matchkey_str |
article:15441024:2022----::omnapaacaayio20dpesanestefbiaebclmtlrnfrmbsdiena |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11665-022-06587-w doi (DE-627)SPR047171839 (SPR)s11665-022-06587-w-e DE-627 ger DE-627 rakwb eng Qi, Kai verfasserin aut Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ASM International 2022 Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract 2205 duplex stainless steel (dpeaa)DE-He213 cold metal transition wire and arc additive manufacturing (dpeaa)DE-He213 forming mechanism (dpeaa)DE-He213 microstructure and properties (dpeaa)DE-He213 multi-layer multi-pass (dpeaa)DE-He213 Li, Ruifeng aut Hu, Zhenxing aut Bi, Xiaolin aut Li, Taotao aut Yue, Hangyu aut Zhang, Baosen aut Enthalten in Journal of materials engineering and performance New York, NY : Springer, 1992 31(2022), 6 vom: 08. Feb., Seite 4631-4641 (DE-627)329975447 (DE-600)2048384-3 1544-1024 nnns volume:31 year:2022 number:6 day:08 month:02 pages:4631-4641 https://dx.doi.org/10.1007/s11665-022-06587-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 31 2022 6 08 02 4631-4641 |
spelling |
10.1007/s11665-022-06587-w doi (DE-627)SPR047171839 (SPR)s11665-022-06587-w-e DE-627 ger DE-627 rakwb eng Qi, Kai verfasserin aut Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ASM International 2022 Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract 2205 duplex stainless steel (dpeaa)DE-He213 cold metal transition wire and arc additive manufacturing (dpeaa)DE-He213 forming mechanism (dpeaa)DE-He213 microstructure and properties (dpeaa)DE-He213 multi-layer multi-pass (dpeaa)DE-He213 Li, Ruifeng aut Hu, Zhenxing aut Bi, Xiaolin aut Li, Taotao aut Yue, Hangyu aut Zhang, Baosen aut Enthalten in Journal of materials engineering and performance New York, NY : Springer, 1992 31(2022), 6 vom: 08. Feb., Seite 4631-4641 (DE-627)329975447 (DE-600)2048384-3 1544-1024 nnns volume:31 year:2022 number:6 day:08 month:02 pages:4631-4641 https://dx.doi.org/10.1007/s11665-022-06587-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 31 2022 6 08 02 4631-4641 |
allfields_unstemmed |
10.1007/s11665-022-06587-w doi (DE-627)SPR047171839 (SPR)s11665-022-06587-w-e DE-627 ger DE-627 rakwb eng Qi, Kai verfasserin aut Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ASM International 2022 Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract 2205 duplex stainless steel (dpeaa)DE-He213 cold metal transition wire and arc additive manufacturing (dpeaa)DE-He213 forming mechanism (dpeaa)DE-He213 microstructure and properties (dpeaa)DE-He213 multi-layer multi-pass (dpeaa)DE-He213 Li, Ruifeng aut Hu, Zhenxing aut Bi, Xiaolin aut Li, Taotao aut Yue, Hangyu aut Zhang, Baosen aut Enthalten in Journal of materials engineering and performance New York, NY : Springer, 1992 31(2022), 6 vom: 08. Feb., Seite 4631-4641 (DE-627)329975447 (DE-600)2048384-3 1544-1024 nnns volume:31 year:2022 number:6 day:08 month:02 pages:4631-4641 https://dx.doi.org/10.1007/s11665-022-06587-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 31 2022 6 08 02 4631-4641 |
allfieldsGer |
10.1007/s11665-022-06587-w doi (DE-627)SPR047171839 (SPR)s11665-022-06587-w-e DE-627 ger DE-627 rakwb eng Qi, Kai verfasserin aut Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ASM International 2022 Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract 2205 duplex stainless steel (dpeaa)DE-He213 cold metal transition wire and arc additive manufacturing (dpeaa)DE-He213 forming mechanism (dpeaa)DE-He213 microstructure and properties (dpeaa)DE-He213 multi-layer multi-pass (dpeaa)DE-He213 Li, Ruifeng aut Hu, Zhenxing aut Bi, Xiaolin aut Li, Taotao aut Yue, Hangyu aut Zhang, Baosen aut Enthalten in Journal of materials engineering and performance New York, NY : Springer, 1992 31(2022), 6 vom: 08. Feb., Seite 4631-4641 (DE-627)329975447 (DE-600)2048384-3 1544-1024 nnns volume:31 year:2022 number:6 day:08 month:02 pages:4631-4641 https://dx.doi.org/10.1007/s11665-022-06587-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 31 2022 6 08 02 4631-4641 |
allfieldsSound |
10.1007/s11665-022-06587-w doi (DE-627)SPR047171839 (SPR)s11665-022-06587-w-e DE-627 ger DE-627 rakwb eng Qi, Kai verfasserin aut Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ASM International 2022 Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract 2205 duplex stainless steel (dpeaa)DE-He213 cold metal transition wire and arc additive manufacturing (dpeaa)DE-He213 forming mechanism (dpeaa)DE-He213 microstructure and properties (dpeaa)DE-He213 multi-layer multi-pass (dpeaa)DE-He213 Li, Ruifeng aut Hu, Zhenxing aut Bi, Xiaolin aut Li, Taotao aut Yue, Hangyu aut Zhang, Baosen aut Enthalten in Journal of materials engineering and performance New York, NY : Springer, 1992 31(2022), 6 vom: 08. Feb., Seite 4631-4641 (DE-627)329975447 (DE-600)2048384-3 1544-1024 nnns volume:31 year:2022 number:6 day:08 month:02 pages:4631-4641 https://dx.doi.org/10.1007/s11665-022-06587-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 31 2022 6 08 02 4631-4641 |
language |
English |
source |
Enthalten in Journal of materials engineering and performance 31(2022), 6 vom: 08. Feb., Seite 4631-4641 volume:31 year:2022 number:6 day:08 month:02 pages:4631-4641 |
sourceStr |
Enthalten in Journal of materials engineering and performance 31(2022), 6 vom: 08. Feb., Seite 4631-4641 volume:31 year:2022 number:6 day:08 month:02 pages:4631-4641 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
2205 duplex stainless steel cold metal transition wire and arc additive manufacturing forming mechanism microstructure and properties multi-layer multi-pass |
isfreeaccess_bool |
false |
container_title |
Journal of materials engineering and performance |
authorswithroles_txt_mv |
Qi, Kai @@aut@@ Li, Ruifeng @@aut@@ Hu, Zhenxing @@aut@@ Bi, Xiaolin @@aut@@ Li, Taotao @@aut@@ Yue, Hangyu @@aut@@ Zhang, Baosen @@aut@@ |
publishDateDaySort_date |
2022-02-08T00:00:00Z |
hierarchy_top_id |
329975447 |
id |
SPR047171839 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047171839</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507195252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220603s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11665-022-06587-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047171839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11665-022-06587-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qi, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ASM International 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2205 duplex stainless steel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cold metal transition wire and arc additive manufacturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forming mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microstructure and properties</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-layer multi-pass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ruifeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Zhenxing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bi, Xiaolin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Taotao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Hangyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Baosen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials engineering and performance</subfield><subfield code="d">New York, NY : Springer, 1992</subfield><subfield code="g">31(2022), 6 vom: 08. Feb., Seite 4631-4641</subfield><subfield code="w">(DE-627)329975447</subfield><subfield code="w">(DE-600)2048384-3</subfield><subfield code="x">1544-1024</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:08</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:4631-4641</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11665-022-06587-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">08</subfield><subfield code="c">02</subfield><subfield code="h">4631-4641</subfield></datafield></record></collection>
|
author |
Qi, Kai |
spellingShingle |
Qi, Kai misc 2205 duplex stainless steel misc cold metal transition wire and arc additive manufacturing misc forming mechanism misc microstructure and properties misc multi-layer multi-pass Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process |
authorStr |
Qi, Kai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)329975447 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1544-1024 |
topic_title |
Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process 2205 duplex stainless steel (dpeaa)DE-He213 cold metal transition wire and arc additive manufacturing (dpeaa)DE-He213 forming mechanism (dpeaa)DE-He213 microstructure and properties (dpeaa)DE-He213 multi-layer multi-pass (dpeaa)DE-He213 |
topic |
misc 2205 duplex stainless steel misc cold metal transition wire and arc additive manufacturing misc forming mechanism misc microstructure and properties misc multi-layer multi-pass |
topic_unstemmed |
misc 2205 duplex stainless steel misc cold metal transition wire and arc additive manufacturing misc forming mechanism misc microstructure and properties misc multi-layer multi-pass |
topic_browse |
misc 2205 duplex stainless steel misc cold metal transition wire and arc additive manufacturing misc forming mechanism misc microstructure and properties misc multi-layer multi-pass |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of materials engineering and performance |
hierarchy_parent_id |
329975447 |
hierarchy_top_title |
Journal of materials engineering and performance |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)329975447 (DE-600)2048384-3 |
title |
Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process |
ctrlnum |
(DE-627)SPR047171839 (SPR)s11665-022-06587-w-e |
title_full |
Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process |
author_sort |
Qi, Kai |
journal |
Journal of materials engineering and performance |
journalStr |
Journal of materials engineering and performance |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
4631 |
author_browse |
Qi, Kai Li, Ruifeng Hu, Zhenxing Bi, Xiaolin Li, Taotao Yue, Hangyu Zhang, Baosen |
container_volume |
31 |
format_se |
Elektronische Aufsätze |
author-letter |
Qi, Kai |
doi_str_mv |
10.1007/s11665-022-06587-w |
title_sort |
forming appearance analysis of 2205 duplex stainless steel fabricated by cold metal transfer (cmt) based wire and arc additive manufacture (waam) process |
title_auth |
Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process |
abstract |
Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract © ASM International 2022 |
abstractGer |
Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract © ASM International 2022 |
abstract_unstemmed |
Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract © ASM International 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process |
url |
https://dx.doi.org/10.1007/s11665-022-06587-w |
remote_bool |
true |
author2 |
Li, Ruifeng Hu, Zhenxing Bi, Xiaolin Li, Taotao Yue, Hangyu Zhang, Baosen |
author2Str |
Li, Ruifeng Hu, Zhenxing Bi, Xiaolin Li, Taotao Yue, Hangyu Zhang, Baosen |
ppnlink |
329975447 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11665-022-06587-w |
up_date |
2024-07-04T02:10:01.843Z |
_version_ |
1803612587920719872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047171839</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507195252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220603s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11665-022-06587-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047171839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11665-022-06587-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qi, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ASM International 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compared with the first generation of duplex stainless steel (DSS), 2205 DSS have improved the steel's resistance to pore corrosion and stress corrosion cracking, and it is widely used in construction, marine and chemical industries. In this paper, ER2209 DSS welding wire is used as the additive material, and wire and arc additive manufacturing based on the cold metal transfer technology (CMT-WAAM) is used to explore the influence of process parameters on the forming appearance of single-layer single-pass specimens, multi-layer single-pass specimens (30th layer) and multi-layer multi-pass specimens (40th layer, 150 × 50 × 70 mm). At the same time, the relationship between the process parameters and the microstructure is observed. The reciprocating additive path is formed uniformly in multi-layer single-pass forming. When the overlap rate is 1/3 in single-layer multi-pass forming, the surface of deposition layer shows the best flatness. When the arc starting point of each layer coincides with the arc ending point of the previous layer, the forming effect is better. The grain size of the additive parts along the Y path is smaller than that of the X path and the ferrite content is more in the multi-layer multi-pass forming. From bottom to top, the austenite content gradually increases and the grain size becomes bigger. The average tensile strengths of the samples along the X1-direction, Y1-direction and Z1-direction under the X path are 820.6 MPa, 811.1 MPa and 762.0 MPa, respectively. The average tensile strengths of the samples along the $ X_{1} $-direction, $ Y_{1} $-direction and $ Z_{1} $-direction under the Y path are 829.7 MPa, 836.5 MPa, and 756.4 MPa, respectively. The tensile samples along the X path and the Y path show better tensile properties and tensile samples showed ductile fracture in all directions. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2205 duplex stainless steel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cold metal transition wire and arc additive manufacturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forming mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microstructure and properties</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-layer multi-pass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ruifeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Zhenxing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bi, Xiaolin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Taotao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Hangyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Baosen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials engineering and performance</subfield><subfield code="d">New York, NY : Springer, 1992</subfield><subfield code="g">31(2022), 6 vom: 08. Feb., Seite 4631-4641</subfield><subfield code="w">(DE-627)329975447</subfield><subfield code="w">(DE-600)2048384-3</subfield><subfield code="x">1544-1024</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:08</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:4631-4641</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11665-022-06587-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">08</subfield><subfield code="c">02</subfield><subfield code="h">4631-4641</subfield></datafield></record></collection>
|
score |
7.4011183 |