Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model
Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters s...
Ausführliche Beschreibung
Autor*in: |
Huang, Hsin-Hua [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Terrestrial, atmospheric and oceanic sciences - Heidelberg : Springer Nature, 1990, 33(2022), 1 vom: 03. Juni |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2022 ; number:1 ; day:03 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s44195-022-00017-z |
---|
Katalog-ID: |
SPR047191708 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047191708 | ||
003 | DE-627 | ||
005 | 20230507195848.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220604s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s44195-022-00017-z |2 doi | |
035 | |a (DE-627)SPR047191708 | ||
035 | |a (SPR)s44195-022-00017-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Huang, Hsin-Hua |e verfasserin |0 (orcid)0000-0002-1115-2427 |4 aut | |
245 | 1 | 0 | |a Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. | ||
520 | |a Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. | ||
650 | 4 | |a 2018 Hualien earthquake |7 (dpeaa)DE-He213 | |
650 | 4 | |a Seismotectonics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Seismicity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Focal mechanism |7 (dpeaa)DE-He213 | |
650 | 4 | |a Longitudinal Valley Suture |7 (dpeaa)DE-He213 | |
650 | 4 | |a 3-D velocity structure |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Yu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Terrestrial, atmospheric and oceanic sciences |d Heidelberg : Springer Nature, 1990 |g 33(2022), 1 vom: 03. Juni |w (DE-627)527829951 |w (DE-600)2278841-4 |x 2311-7680 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2022 |g number:1 |g day:03 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s44195-022-00017-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 33 |j 2022 |e 1 |b 03 |c 06 |
author_variant |
h h h hhh y w yw |
---|---|
matchkey_str |
article:23117680:2022----::esoeisrcueeetteotenogtdnlalyeeldyh2122hainatq |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s44195-022-00017-z doi (DE-627)SPR047191708 (SPR)s44195-022-00017-z-e DE-627 ger DE-627 rakwb eng Huang, Hsin-Hua verfasserin (orcid)0000-0002-1115-2427 aut Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. 2018 Hualien earthquake (dpeaa)DE-He213 Seismotectonics (dpeaa)DE-He213 Seismicity (dpeaa)DE-He213 Focal mechanism (dpeaa)DE-He213 Longitudinal Valley Suture (dpeaa)DE-He213 3-D velocity structure (dpeaa)DE-He213 Wang, Yu aut Enthalten in Terrestrial, atmospheric and oceanic sciences Heidelberg : Springer Nature, 1990 33(2022), 1 vom: 03. Juni (DE-627)527829951 (DE-600)2278841-4 2311-7680 nnns volume:33 year:2022 number:1 day:03 month:06 https://dx.doi.org/10.1007/s44195-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 33 2022 1 03 06 |
spelling |
10.1007/s44195-022-00017-z doi (DE-627)SPR047191708 (SPR)s44195-022-00017-z-e DE-627 ger DE-627 rakwb eng Huang, Hsin-Hua verfasserin (orcid)0000-0002-1115-2427 aut Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. 2018 Hualien earthquake (dpeaa)DE-He213 Seismotectonics (dpeaa)DE-He213 Seismicity (dpeaa)DE-He213 Focal mechanism (dpeaa)DE-He213 Longitudinal Valley Suture (dpeaa)DE-He213 3-D velocity structure (dpeaa)DE-He213 Wang, Yu aut Enthalten in Terrestrial, atmospheric and oceanic sciences Heidelberg : Springer Nature, 1990 33(2022), 1 vom: 03. Juni (DE-627)527829951 (DE-600)2278841-4 2311-7680 nnns volume:33 year:2022 number:1 day:03 month:06 https://dx.doi.org/10.1007/s44195-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 33 2022 1 03 06 |
allfields_unstemmed |
10.1007/s44195-022-00017-z doi (DE-627)SPR047191708 (SPR)s44195-022-00017-z-e DE-627 ger DE-627 rakwb eng Huang, Hsin-Hua verfasserin (orcid)0000-0002-1115-2427 aut Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. 2018 Hualien earthquake (dpeaa)DE-He213 Seismotectonics (dpeaa)DE-He213 Seismicity (dpeaa)DE-He213 Focal mechanism (dpeaa)DE-He213 Longitudinal Valley Suture (dpeaa)DE-He213 3-D velocity structure (dpeaa)DE-He213 Wang, Yu aut Enthalten in Terrestrial, atmospheric and oceanic sciences Heidelberg : Springer Nature, 1990 33(2022), 1 vom: 03. Juni (DE-627)527829951 (DE-600)2278841-4 2311-7680 nnns volume:33 year:2022 number:1 day:03 month:06 https://dx.doi.org/10.1007/s44195-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 33 2022 1 03 06 |
allfieldsGer |
10.1007/s44195-022-00017-z doi (DE-627)SPR047191708 (SPR)s44195-022-00017-z-e DE-627 ger DE-627 rakwb eng Huang, Hsin-Hua verfasserin (orcid)0000-0002-1115-2427 aut Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. 2018 Hualien earthquake (dpeaa)DE-He213 Seismotectonics (dpeaa)DE-He213 Seismicity (dpeaa)DE-He213 Focal mechanism (dpeaa)DE-He213 Longitudinal Valley Suture (dpeaa)DE-He213 3-D velocity structure (dpeaa)DE-He213 Wang, Yu aut Enthalten in Terrestrial, atmospheric and oceanic sciences Heidelberg : Springer Nature, 1990 33(2022), 1 vom: 03. Juni (DE-627)527829951 (DE-600)2278841-4 2311-7680 nnns volume:33 year:2022 number:1 day:03 month:06 https://dx.doi.org/10.1007/s44195-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 33 2022 1 03 06 |
allfieldsSound |
10.1007/s44195-022-00017-z doi (DE-627)SPR047191708 (SPR)s44195-022-00017-z-e DE-627 ger DE-627 rakwb eng Huang, Hsin-Hua verfasserin (orcid)0000-0002-1115-2427 aut Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. 2018 Hualien earthquake (dpeaa)DE-He213 Seismotectonics (dpeaa)DE-He213 Seismicity (dpeaa)DE-He213 Focal mechanism (dpeaa)DE-He213 Longitudinal Valley Suture (dpeaa)DE-He213 3-D velocity structure (dpeaa)DE-He213 Wang, Yu aut Enthalten in Terrestrial, atmospheric and oceanic sciences Heidelberg : Springer Nature, 1990 33(2022), 1 vom: 03. Juni (DE-627)527829951 (DE-600)2278841-4 2311-7680 nnns volume:33 year:2022 number:1 day:03 month:06 https://dx.doi.org/10.1007/s44195-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 33 2022 1 03 06 |
language |
English |
source |
Enthalten in Terrestrial, atmospheric and oceanic sciences 33(2022), 1 vom: 03. Juni volume:33 year:2022 number:1 day:03 month:06 |
sourceStr |
Enthalten in Terrestrial, atmospheric and oceanic sciences 33(2022), 1 vom: 03. Juni volume:33 year:2022 number:1 day:03 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
2018 Hualien earthquake Seismotectonics Seismicity Focal mechanism Longitudinal Valley Suture 3-D velocity structure |
isfreeaccess_bool |
true |
container_title |
Terrestrial, atmospheric and oceanic sciences |
authorswithroles_txt_mv |
Huang, Hsin-Hua @@aut@@ Wang, Yu @@aut@@ |
publishDateDaySort_date |
2022-06-03T00:00:00Z |
hierarchy_top_id |
527829951 |
id |
SPR047191708 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047191708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507195848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220604s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44195-022-00017-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047191708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44195-022-00017-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Hsin-Hua</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1115-2427</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2018 Hualien earthquake</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismotectonics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismicity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Focal mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Longitudinal Valley Suture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3-D velocity structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Terrestrial, atmospheric and oceanic sciences</subfield><subfield code="d">Heidelberg : Springer Nature, 1990</subfield><subfield code="g">33(2022), 1 vom: 03. Juni</subfield><subfield code="w">(DE-627)527829951</subfield><subfield code="w">(DE-600)2278841-4</subfield><subfield code="x">2311-7680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44195-022-00017-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Huang, Hsin-Hua |
spellingShingle |
Huang, Hsin-Hua misc 2018 Hualien earthquake misc Seismotectonics misc Seismicity misc Focal mechanism misc Longitudinal Valley Suture misc 3-D velocity structure Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model |
authorStr |
Huang, Hsin-Hua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)527829951 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2311-7680 |
topic_title |
Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model 2018 Hualien earthquake (dpeaa)DE-He213 Seismotectonics (dpeaa)DE-He213 Seismicity (dpeaa)DE-He213 Focal mechanism (dpeaa)DE-He213 Longitudinal Valley Suture (dpeaa)DE-He213 3-D velocity structure (dpeaa)DE-He213 |
topic |
misc 2018 Hualien earthquake misc Seismotectonics misc Seismicity misc Focal mechanism misc Longitudinal Valley Suture misc 3-D velocity structure |
topic_unstemmed |
misc 2018 Hualien earthquake misc Seismotectonics misc Seismicity misc Focal mechanism misc Longitudinal Valley Suture misc 3-D velocity structure |
topic_browse |
misc 2018 Hualien earthquake misc Seismotectonics misc Seismicity misc Focal mechanism misc Longitudinal Valley Suture misc 3-D velocity structure |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Terrestrial, atmospheric and oceanic sciences |
hierarchy_parent_id |
527829951 |
hierarchy_top_title |
Terrestrial, atmospheric and oceanic sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)527829951 (DE-600)2278841-4 |
title |
Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model |
ctrlnum |
(DE-627)SPR047191708 (SPR)s44195-022-00017-z-e |
title_full |
Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model |
author_sort |
Huang, Hsin-Hua |
journal |
Terrestrial, atmospheric and oceanic sciences |
journalStr |
Terrestrial, atmospheric and oceanic sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Huang, Hsin-Hua Wang, Yu |
container_volume |
33 |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, Hsin-Hua |
doi_str_mv |
10.1007/s44195-022-00017-z |
normlink |
(ORCID)0000-0002-1115-2427 |
normlink_prefix_str_mv |
(orcid)0000-0002-1115-2427 |
title_sort |
seismogenic structure beneath the northern longitudinal valley revealed by the 2018–2021 hualien earthquake sequences and 3-d velocity model |
title_auth |
Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model |
abstract |
Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. © The Author(s) 2022 |
abstractGer |
Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. © The Author(s) 2022 |
abstract_unstemmed |
Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt. Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model |
url |
https://dx.doi.org/10.1007/s44195-022-00017-z |
remote_bool |
true |
author2 |
Wang, Yu |
author2Str |
Wang, Yu |
ppnlink |
527829951 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s44195-022-00017-z |
up_date |
2024-07-04T02:14:35.979Z |
_version_ |
1803612875370004480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047191708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507195848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220604s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44195-022-00017-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047191708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44195-022-00017-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Hsin-Hua</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1115-2427</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study uses the 3D crustal velocity model and the relocated earthquake hypocenters, including the 2018–2021 earthquake sequences, to re-assess the seismogenic structures at the northern Longitudinal Valley. Earthquake focal mechanisms and relocated hypocenters from earthquake clusters suggest a gentle west-dipping fault existing under the Longitudinal Valley and the Coastal Range. Earthquake clusters associated with this west-dipping fault indicate it develops along the base of high-velocity Central Range metamorphic rocks and is likely branched out from the previously recognized Central Range Fault (CRF). Both the 3D velocity model and the geometry of earthquake clusters suggest this structure truncates the Longitudinal Valley Fault north of 23.7° N, separating the northernmost LVF into the shallow and the deep segments. The shallow segment then plausibly evolves to be a transpressional fault system that mainly accommodates the left-lateral motions. This interpretation coincides with the geomorphological and geodetic observations showing that the northern LVF is dominated by the left-lateral faulting, instead of showing a significant reverse component as in the southern Longitudinal Valley. The limited fault width and geometry of the shallow LVF segment also imply its seismic potential is relatively limited, while the underling west-dipping fault and the deeper segment of the LVF are the major seismogenic structure. Such development of the major CRF-related west-dipping structure could accommodate the northwestward subduction of the Philippine Sea Plate and also likely reactivate part of the Offshore Eastern Taiwan Thrust Belt.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Key Points Earthquake relocations and the 3D velocity model suggest a westward dipping structural boundary exists beneath the coastal range.The 2021 earthquake cluster is likely sourced from this structural boundaryThe northward extension of this structural boundary is likely connecting to the main rupture fault of the 2018 Hualien earthquake.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2018 Hualien earthquake</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismotectonics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismicity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Focal mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Longitudinal Valley Suture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3-D velocity structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Terrestrial, atmospheric and oceanic sciences</subfield><subfield code="d">Heidelberg : Springer Nature, 1990</subfield><subfield code="g">33(2022), 1 vom: 03. Juni</subfield><subfield code="w">(DE-627)527829951</subfield><subfield code="w">(DE-600)2278841-4</subfield><subfield code="x">2311-7680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44195-022-00017-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.403063 |