In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor
Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study i...
Ausführliche Beschreibung
Autor*in: |
Guo, Zhinan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: eLight - [Singapore] : Springer Singapore, 2021, 2(2022), 1 vom: 06. Juni |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2022 ; number:1 ; day:06 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s43593-022-00017-z |
---|
Katalog-ID: |
SPR047199571 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047199571 | ||
003 | DE-627 | ||
005 | 20230507200734.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220606s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s43593-022-00017-z |2 doi | |
035 | |a (DE-627)SPR047199571 | ||
035 | |a (SPR)s43593-022-00017-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Guo, Zhinan |e verfasserin |4 aut | |
245 | 1 | 0 | |a In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. | ||
650 | 4 | |a Neutron-transmutation doping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Substitutional doping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Two-dimensional materials |7 (dpeaa)DE-He213 | |
650 | 4 | |a Phototransistor |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zeng, Yonghong |4 aut | |
700 | 1 | |a Meng, Fanxu |4 aut | |
700 | 1 | |a Qu, Hengze |4 aut | |
700 | 1 | |a Zhang, Shengli |4 aut | |
700 | 1 | |a Hu, Shipeng |4 aut | |
700 | 1 | |a Fan, Sidi |4 aut | |
700 | 1 | |a Zeng, Haibo |4 aut | |
700 | 1 | |a Cao, Rui |4 aut | |
700 | 1 | |a Prasad, Paras N. |4 aut | |
700 | 1 | |a Fan, Dianyuan |4 aut | |
700 | 1 | |a Zhang, Han |4 aut | |
773 | 0 | 8 | |i Enthalten in |t eLight |d [Singapore] : Springer Singapore, 2021 |g 2(2022), 1 vom: 06. Juni |w (DE-627)176201291X |w (DE-600)3075589-X |x 2662-8643 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2022 |g number:1 |g day:06 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s43593-022-00017-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2022 |e 1 |b 06 |c 06 |
author_variant |
z g zg y z yz f m fm h q hq s z sz s h sh s f sf h z hz r c rc p n p pn pnp d f df h z hz |
---|---|
matchkey_str |
article:26628643:2022----::niuetotasuainosbtttoadpni2lyrdnime |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s43593-022-00017-z doi (DE-627)SPR047199571 (SPR)s43593-022-00017-z-e DE-627 ger DE-627 rakwb eng Guo, Zhinan verfasserin aut In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. Neutron-transmutation doping (dpeaa)DE-He213 Substitutional doping (dpeaa)DE-He213 Two-dimensional materials (dpeaa)DE-He213 Phototransistor (dpeaa)DE-He213 Zeng, Yonghong aut Meng, Fanxu aut Qu, Hengze aut Zhang, Shengli aut Hu, Shipeng aut Fan, Sidi aut Zeng, Haibo aut Cao, Rui aut Prasad, Paras N. aut Fan, Dianyuan aut Zhang, Han aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 06. Juni (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:2 year:2022 number:1 day:06 month:06 https://dx.doi.org/10.1186/s43593-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 06 06 |
spelling |
10.1186/s43593-022-00017-z doi (DE-627)SPR047199571 (SPR)s43593-022-00017-z-e DE-627 ger DE-627 rakwb eng Guo, Zhinan verfasserin aut In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. Neutron-transmutation doping (dpeaa)DE-He213 Substitutional doping (dpeaa)DE-He213 Two-dimensional materials (dpeaa)DE-He213 Phototransistor (dpeaa)DE-He213 Zeng, Yonghong aut Meng, Fanxu aut Qu, Hengze aut Zhang, Shengli aut Hu, Shipeng aut Fan, Sidi aut Zeng, Haibo aut Cao, Rui aut Prasad, Paras N. aut Fan, Dianyuan aut Zhang, Han aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 06. Juni (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:2 year:2022 number:1 day:06 month:06 https://dx.doi.org/10.1186/s43593-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 06 06 |
allfields_unstemmed |
10.1186/s43593-022-00017-z doi (DE-627)SPR047199571 (SPR)s43593-022-00017-z-e DE-627 ger DE-627 rakwb eng Guo, Zhinan verfasserin aut In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. Neutron-transmutation doping (dpeaa)DE-He213 Substitutional doping (dpeaa)DE-He213 Two-dimensional materials (dpeaa)DE-He213 Phototransistor (dpeaa)DE-He213 Zeng, Yonghong aut Meng, Fanxu aut Qu, Hengze aut Zhang, Shengli aut Hu, Shipeng aut Fan, Sidi aut Zeng, Haibo aut Cao, Rui aut Prasad, Paras N. aut Fan, Dianyuan aut Zhang, Han aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 06. Juni (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:2 year:2022 number:1 day:06 month:06 https://dx.doi.org/10.1186/s43593-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 06 06 |
allfieldsGer |
10.1186/s43593-022-00017-z doi (DE-627)SPR047199571 (SPR)s43593-022-00017-z-e DE-627 ger DE-627 rakwb eng Guo, Zhinan verfasserin aut In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. Neutron-transmutation doping (dpeaa)DE-He213 Substitutional doping (dpeaa)DE-He213 Two-dimensional materials (dpeaa)DE-He213 Phototransistor (dpeaa)DE-He213 Zeng, Yonghong aut Meng, Fanxu aut Qu, Hengze aut Zhang, Shengli aut Hu, Shipeng aut Fan, Sidi aut Zeng, Haibo aut Cao, Rui aut Prasad, Paras N. aut Fan, Dianyuan aut Zhang, Han aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 06. Juni (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:2 year:2022 number:1 day:06 month:06 https://dx.doi.org/10.1186/s43593-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 06 06 |
allfieldsSound |
10.1186/s43593-022-00017-z doi (DE-627)SPR047199571 (SPR)s43593-022-00017-z-e DE-627 ger DE-627 rakwb eng Guo, Zhinan verfasserin aut In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. Neutron-transmutation doping (dpeaa)DE-He213 Substitutional doping (dpeaa)DE-He213 Two-dimensional materials (dpeaa)DE-He213 Phototransistor (dpeaa)DE-He213 Zeng, Yonghong aut Meng, Fanxu aut Qu, Hengze aut Zhang, Shengli aut Hu, Shipeng aut Fan, Sidi aut Zeng, Haibo aut Cao, Rui aut Prasad, Paras N. aut Fan, Dianyuan aut Zhang, Han aut Enthalten in eLight [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 06. Juni (DE-627)176201291X (DE-600)3075589-X 2662-8643 nnns volume:2 year:2022 number:1 day:06 month:06 https://dx.doi.org/10.1186/s43593-022-00017-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 06 06 |
language |
English |
source |
Enthalten in eLight 2(2022), 1 vom: 06. Juni volume:2 year:2022 number:1 day:06 month:06 |
sourceStr |
Enthalten in eLight 2(2022), 1 vom: 06. Juni volume:2 year:2022 number:1 day:06 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neutron-transmutation doping Substitutional doping Two-dimensional materials Phototransistor |
isfreeaccess_bool |
true |
container_title |
eLight |
authorswithroles_txt_mv |
Guo, Zhinan @@aut@@ Zeng, Yonghong @@aut@@ Meng, Fanxu @@aut@@ Qu, Hengze @@aut@@ Zhang, Shengli @@aut@@ Hu, Shipeng @@aut@@ Fan, Sidi @@aut@@ Zeng, Haibo @@aut@@ Cao, Rui @@aut@@ Prasad, Paras N. @@aut@@ Fan, Dianyuan @@aut@@ Zhang, Han @@aut@@ |
publishDateDaySort_date |
2022-06-06T00:00:00Z |
hierarchy_top_id |
176201291X |
id |
SPR047199571 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047199571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507200734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220606s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43593-022-00017-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047199571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43593-022-00017-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Zhinan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutron-transmutation doping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substitutional doping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-dimensional materials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phototransistor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Yonghong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Fanxu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Hengze</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shengli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Shipeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Sidi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Haibo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Paras N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Dianyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Han</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">eLight</subfield><subfield code="d">[Singapore] : Springer Singapore, 2021</subfield><subfield code="g">2(2022), 1 vom: 06. Juni</subfield><subfield code="w">(DE-627)176201291X</subfield><subfield code="w">(DE-600)3075589-X</subfield><subfield code="x">2662-8643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43593-022-00017-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Guo, Zhinan |
spellingShingle |
Guo, Zhinan misc Neutron-transmutation doping misc Substitutional doping misc Two-dimensional materials misc Phototransistor In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor |
authorStr |
Guo, Zhinan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)176201291X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2662-8643 |
topic_title |
In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor Neutron-transmutation doping (dpeaa)DE-He213 Substitutional doping (dpeaa)DE-He213 Two-dimensional materials (dpeaa)DE-He213 Phototransistor (dpeaa)DE-He213 |
topic |
misc Neutron-transmutation doping misc Substitutional doping misc Two-dimensional materials misc Phototransistor |
topic_unstemmed |
misc Neutron-transmutation doping misc Substitutional doping misc Two-dimensional materials misc Phototransistor |
topic_browse |
misc Neutron-transmutation doping misc Substitutional doping misc Two-dimensional materials misc Phototransistor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
eLight |
hierarchy_parent_id |
176201291X |
hierarchy_top_title |
eLight |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)176201291X (DE-600)3075589-X |
title |
In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor |
ctrlnum |
(DE-627)SPR047199571 (SPR)s43593-022-00017-z-e |
title_full |
In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor |
author_sort |
Guo, Zhinan |
journal |
eLight |
journalStr |
eLight |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Guo, Zhinan Zeng, Yonghong Meng, Fanxu Qu, Hengze Zhang, Shengli Hu, Shipeng Fan, Sidi Zeng, Haibo Cao, Rui Prasad, Paras N. Fan, Dianyuan Zhang, Han |
container_volume |
2 |
format_se |
Elektronische Aufsätze |
author-letter |
Guo, Zhinan |
doi_str_mv |
10.1186/s43593-022-00017-z |
title_sort |
in-situ neutron-transmutation for substitutional doping in 2d layered indium selenide based phototransistor |
title_auth |
In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor |
abstract |
Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. © The Author(s) 2022 |
abstractGer |
Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor |
url |
https://dx.doi.org/10.1186/s43593-022-00017-z |
remote_bool |
true |
author2 |
Zeng, Yonghong Meng, Fanxu Qu, Hengze Zhang, Shengli Hu, Shipeng Fan, Sidi Zeng, Haibo Cao, Rui Prasad, Paras N. Fan, Dianyuan Zhang, Han |
author2Str |
Zeng, Yonghong Meng, Fanxu Qu, Hengze Zhang, Shengli Hu, Shipeng Fan, Sidi Zeng, Haibo Cao, Rui Prasad, Paras N. Fan, Dianyuan Zhang, Han |
ppnlink |
176201291X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s43593-022-00017-z |
up_date |
2024-07-04T02:16:41.099Z |
_version_ |
1803613006568882176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047199571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507200734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220606s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43593-022-00017-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047199571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43593-022-00017-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Zhinan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Neutron-transmutation doping (NTD) has been demonstrated for the first time in this work for substitutional introduction of tin (Sn) shallow donors into two-dimensional (2D) layered indium selenide (InSe) to manipulate electron transfer and charge carrier dynamics. Multidisciplinary study including density functional theory, transient optical absorption, and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe. The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times, being as high as 397 A/W. The results show that NTD is a highly effective and controllable doping method, possessing good compatibility with the semiconductor manufacturing process, even after device fabrication, and can be carried out without introducing any contamination, which is radically different from traditional doping methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutron-transmutation doping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substitutional doping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-dimensional materials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phototransistor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Yonghong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Fanxu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Hengze</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shengli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Shipeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Sidi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Haibo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Paras N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Dianyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Han</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">eLight</subfield><subfield code="d">[Singapore] : Springer Singapore, 2021</subfield><subfield code="g">2(2022), 1 vom: 06. Juni</subfield><subfield code="w">(DE-627)176201291X</subfield><subfield code="w">(DE-600)3075589-X</subfield><subfield code="x">2662-8643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43593-022-00017-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.402769 |