Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir
Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and...
Ausführliche Beschreibung
Autor*in: |
Hashan, Mahamudul [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Geomechanics and geophysics for geo-energy and geo-resources - New York, NY [u.a.] : Springer international, 2015, 8(2022), 4 vom: 11. Juni |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:4 ; day:11 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s40948-022-00415-0 |
---|
Katalog-ID: |
SPR047257237 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047257237 | ||
003 | DE-627 | ||
005 | 20230509102630.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220612s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40948-022-00415-0 |2 doi | |
035 | |a (DE-627)SPR047257237 | ||
035 | |a (SPR)s40948-022-00415-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Hashan, Mahamudul |e verfasserin |4 aut | |
245 | 1 | 0 | |a Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 | ||
520 | |a Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. | ||
650 | 4 | |a Reservoir characterization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Heterogeneous reservoir |7 (dpeaa)DE-He213 | |
650 | 4 | |a Well logs |7 (dpeaa)DE-He213 | |
650 | 4 | |a Permeability prediction methods |7 (dpeaa)DE-He213 | |
650 | 4 | |a Log variables ranking |7 (dpeaa)DE-He213 | |
700 | 1 | |a Munshi, Tanveer Alam |4 aut | |
700 | 1 | |a Zaman, Asim |4 aut | |
700 | 1 | |a Jahan, Labiba Nusrat |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geomechanics and geophysics for geo-energy and geo-resources |d New York, NY [u.a.] : Springer international, 2015 |g 8(2022), 4 vom: 11. Juni |w (DE-627)827603401 |w (DE-600)2823606-3 |x 2363-8427 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:4 |g day:11 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40948-022-00415-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 4 |b 11 |c 06 |
author_variant |
m h mh t a m ta tam a z az l n j ln lnj |
---|---|
matchkey_str |
article:23638427:2022----::miiasaitclncnetoitehdculdihovralsaknfrhpeitooprntoke |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40948-022-00415-0 doi (DE-627)SPR047257237 (SPR)s40948-022-00415-0-e DE-627 ger DE-627 rakwb eng Hashan, Mahamudul verfasserin aut Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. Reservoir characterization (dpeaa)DE-He213 Heterogeneous reservoir (dpeaa)DE-He213 Well logs (dpeaa)DE-He213 Permeability prediction methods (dpeaa)DE-He213 Log variables ranking (dpeaa)DE-He213 Munshi, Tanveer Alam aut Zaman, Asim aut Jahan, Labiba Nusrat aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources New York, NY [u.a.] : Springer international, 2015 8(2022), 4 vom: 11. Juni (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:8 year:2022 number:4 day:11 month:06 https://dx.doi.org/10.1007/s40948-022-00415-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 4 11 06 |
spelling |
10.1007/s40948-022-00415-0 doi (DE-627)SPR047257237 (SPR)s40948-022-00415-0-e DE-627 ger DE-627 rakwb eng Hashan, Mahamudul verfasserin aut Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. Reservoir characterization (dpeaa)DE-He213 Heterogeneous reservoir (dpeaa)DE-He213 Well logs (dpeaa)DE-He213 Permeability prediction methods (dpeaa)DE-He213 Log variables ranking (dpeaa)DE-He213 Munshi, Tanveer Alam aut Zaman, Asim aut Jahan, Labiba Nusrat aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources New York, NY [u.a.] : Springer international, 2015 8(2022), 4 vom: 11. Juni (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:8 year:2022 number:4 day:11 month:06 https://dx.doi.org/10.1007/s40948-022-00415-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 4 11 06 |
allfields_unstemmed |
10.1007/s40948-022-00415-0 doi (DE-627)SPR047257237 (SPR)s40948-022-00415-0-e DE-627 ger DE-627 rakwb eng Hashan, Mahamudul verfasserin aut Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. Reservoir characterization (dpeaa)DE-He213 Heterogeneous reservoir (dpeaa)DE-He213 Well logs (dpeaa)DE-He213 Permeability prediction methods (dpeaa)DE-He213 Log variables ranking (dpeaa)DE-He213 Munshi, Tanveer Alam aut Zaman, Asim aut Jahan, Labiba Nusrat aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources New York, NY [u.a.] : Springer international, 2015 8(2022), 4 vom: 11. Juni (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:8 year:2022 number:4 day:11 month:06 https://dx.doi.org/10.1007/s40948-022-00415-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 4 11 06 |
allfieldsGer |
10.1007/s40948-022-00415-0 doi (DE-627)SPR047257237 (SPR)s40948-022-00415-0-e DE-627 ger DE-627 rakwb eng Hashan, Mahamudul verfasserin aut Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. Reservoir characterization (dpeaa)DE-He213 Heterogeneous reservoir (dpeaa)DE-He213 Well logs (dpeaa)DE-He213 Permeability prediction methods (dpeaa)DE-He213 Log variables ranking (dpeaa)DE-He213 Munshi, Tanveer Alam aut Zaman, Asim aut Jahan, Labiba Nusrat aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources New York, NY [u.a.] : Springer international, 2015 8(2022), 4 vom: 11. Juni (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:8 year:2022 number:4 day:11 month:06 https://dx.doi.org/10.1007/s40948-022-00415-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 4 11 06 |
allfieldsSound |
10.1007/s40948-022-00415-0 doi (DE-627)SPR047257237 (SPR)s40948-022-00415-0-e DE-627 ger DE-627 rakwb eng Hashan, Mahamudul verfasserin aut Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. Reservoir characterization (dpeaa)DE-He213 Heterogeneous reservoir (dpeaa)DE-He213 Well logs (dpeaa)DE-He213 Permeability prediction methods (dpeaa)DE-He213 Log variables ranking (dpeaa)DE-He213 Munshi, Tanveer Alam aut Zaman, Asim aut Jahan, Labiba Nusrat aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources New York, NY [u.a.] : Springer international, 2015 8(2022), 4 vom: 11. Juni (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:8 year:2022 number:4 day:11 month:06 https://dx.doi.org/10.1007/s40948-022-00415-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 4 11 06 |
language |
English |
source |
Enthalten in Geomechanics and geophysics for geo-energy and geo-resources 8(2022), 4 vom: 11. Juni volume:8 year:2022 number:4 day:11 month:06 |
sourceStr |
Enthalten in Geomechanics and geophysics for geo-energy and geo-resources 8(2022), 4 vom: 11. Juni volume:8 year:2022 number:4 day:11 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Reservoir characterization Heterogeneous reservoir Well logs Permeability prediction methods Log variables ranking |
isfreeaccess_bool |
false |
container_title |
Geomechanics and geophysics for geo-energy and geo-resources |
authorswithroles_txt_mv |
Hashan, Mahamudul @@aut@@ Munshi, Tanveer Alam @@aut@@ Zaman, Asim @@aut@@ Jahan, Labiba Nusrat @@aut@@ |
publishDateDaySort_date |
2022-06-11T00:00:00Z |
hierarchy_top_id |
827603401 |
id |
SPR047257237 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047257237</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509102630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220612s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40948-022-00415-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047257237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40948-022-00415-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hashan, Mahamudul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir characterization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous reservoir</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Well logs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permeability prediction methods</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Log variables ranking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munshi, Tanveer Alam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaman, Asim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jahan, Labiba Nusrat</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geomechanics and geophysics for geo-energy and geo-resources</subfield><subfield code="d">New York, NY [u.a.] : Springer international, 2015</subfield><subfield code="g">8(2022), 4 vom: 11. Juni</subfield><subfield code="w">(DE-627)827603401</subfield><subfield code="w">(DE-600)2823606-3</subfield><subfield code="x">2363-8427</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:11</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40948-022-00415-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">11</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Hashan, Mahamudul |
spellingShingle |
Hashan, Mahamudul misc Reservoir characterization misc Heterogeneous reservoir misc Well logs misc Permeability prediction methods misc Log variables ranking Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir |
authorStr |
Hashan, Mahamudul |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)827603401 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2363-8427 |
topic_title |
Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir Reservoir characterization (dpeaa)DE-He213 Heterogeneous reservoir (dpeaa)DE-He213 Well logs (dpeaa)DE-He213 Permeability prediction methods (dpeaa)DE-He213 Log variables ranking (dpeaa)DE-He213 |
topic |
misc Reservoir characterization misc Heterogeneous reservoir misc Well logs misc Permeability prediction methods misc Log variables ranking |
topic_unstemmed |
misc Reservoir characterization misc Heterogeneous reservoir misc Well logs misc Permeability prediction methods misc Log variables ranking |
topic_browse |
misc Reservoir characterization misc Heterogeneous reservoir misc Well logs misc Permeability prediction methods misc Log variables ranking |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geomechanics and geophysics for geo-energy and geo-resources |
hierarchy_parent_id |
827603401 |
hierarchy_top_title |
Geomechanics and geophysics for geo-energy and geo-resources |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)827603401 (DE-600)2823606-3 |
title |
Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir |
ctrlnum |
(DE-627)SPR047257237 (SPR)s40948-022-00415-0-e |
title_full |
Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir |
author_sort |
Hashan, Mahamudul |
journal |
Geomechanics and geophysics for geo-energy and geo-resources |
journalStr |
Geomechanics and geophysics for geo-energy and geo-resources |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Hashan, Mahamudul Munshi, Tanveer Alam Zaman, Asim Jahan, Labiba Nusrat |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Hashan, Mahamudul |
doi_str_mv |
10.1007/s40948-022-00415-0 |
title_sort |
empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir |
title_auth |
Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir |
abstract |
Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
abstractGer |
Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
abstract_unstemmed |
Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir |
url |
https://dx.doi.org/10.1007/s40948-022-00415-0 |
remote_bool |
true |
author2 |
Munshi, Tanveer Alam Zaman, Asim Jahan, Labiba Nusrat |
author2Str |
Munshi, Tanveer Alam Zaman, Asim Jahan, Labiba Nusrat |
ppnlink |
827603401 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40948-022-00415-0 |
up_date |
2024-07-04T02:29:32.652Z |
_version_ |
1803613815602937856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047257237</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509102630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220612s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40948-022-00415-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047257237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40948-022-00415-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hashan, Mahamudul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Empirical, statistical, and connectionist methods coupled with log variables ranking for the prediction of pore network permeability in a heterogeneous oil reservoir</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Permeability is the most important petrophysical attribute for analyzing fluid flow behavior. So far, no universal approach can provide an accurate and reliable estimation of permeability for an entire hydrocarbon reservoir. The present study utilizes five empirical, three statistical, and three connectionist methods to estimate the permeability of a heterogeneous oil reservoir. The empirical models include ‘Tixier’, ‘Morris and Biggs’, ‘Timur’, ‘Coates and Dumanoir’, and ‘Coates and Denoo’. The statistical methods incorporate ‘multiple variable regression (MVR)’, ‘gaussian process regression (GPR)’, and ‘bagged tree (BT)’. The connectionist techniques are ‘support vector machine (SVM)’, ‘convolutional neural network (CNN)’, and ‘feed-forward backpropagation artificial neural network (ANN) with training algorithms Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG)’. Prediction efficiency of study methods are compared using six statistical indexes, such as regression coefficient, mean squared error, root mean squared error, average absolute error percentage, minimum absolute error percentage, and maximum absolute error percentage. Ranking of the log variables based on their importance in permeability modeling has been performed. To achieve the objectives, 439 data points comprising of laboratory derived core permeability information and seven well log parameters, namely gamma ray (%$GR%$), bulk density (%$RHOB%$), sonic travel time (%$DT%$), true resistivity (%$LLD%$), neutron porosity (%$\varphi_{N}%$), NMR porosity, and bulk volume of irreducible fluid are selected from a Jeanne d’Arc Basin’s reservoir. All these methods are tested on different data sets of study wells to confirm the reproducibility of the results. The results of the statistical indexes analysis imply that the empirical relationships are inappropriate for a heterogeneous reservoir as they provide a poor match with real data. However, the ‘Coates and Dumanoir’ model provides a relatively better match with core permeability among all five empirical approaches. The MVR is less efficient among statistical models, BT is reasonably efficient, and GPR is highly efficient. Amidst soft computing techniques, SVM, ANN with LM, and ANN with BR show very high efficiency, whereas ANN with SCG is moderately acceptable, and CNN provides extremely poor efficiency. A comprehensive comparison among all studied models shows that the best predictor is ANN with BR as it provides an excellent match between predicted and real data, and it requires only 14.9 s to process the data. Both statistical and connectionist methods imply that the %$GR%$ and %$\varphi_{N}%$ are the most vital log parameters in permeability modeling, whereas %$DT%$, %$RHOB%$, and %$LLD%$ are the least important predictor variables. The outcomes of this study will help engineers and researchers to apply an accurate permeability prediction tool in petroleum industries during the exploration phase to obtain accurate reservoir permeability data, correct analysis of fluid flow behavior, accurate reservoir characterization, and reduced uncertainty associated with a reservoir evaluation. Article highlightsEmpirical models are incapable of predicting permeability accurately.SVM, ANN with LM, and ANN with BR are the most efficient predictive methods.An accurate and cost-effective permeability prediction strategy is achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir characterization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous reservoir</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Well logs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permeability prediction methods</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Log variables ranking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munshi, Tanveer Alam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaman, Asim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jahan, Labiba Nusrat</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geomechanics and geophysics for geo-energy and geo-resources</subfield><subfield code="d">New York, NY [u.a.] : Springer international, 2015</subfield><subfield code="g">8(2022), 4 vom: 11. Juni</subfield><subfield code="w">(DE-627)827603401</subfield><subfield code="w">(DE-600)2823606-3</subfield><subfield code="x">2363-8427</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:11</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40948-022-00415-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">11</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.398505 |