Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires
Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size....
Ausführliche Beschreibung
Autor*in: |
Chen, Anqi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Nanoscale research letters - New York, NY [u.a.] : Springer, 2006, 17(2022), 1 vom: 20. Juni |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2022 ; number:1 ; day:20 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s11671-022-03698-0 |
---|
Katalog-ID: |
SPR047348127 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047348127 | ||
003 | DE-627 | ||
005 | 20230507212330.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220621s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s11671-022-03698-0 |2 doi | |
035 | |a (DE-627)SPR047348127 | ||
035 | |a (SPR)s11671-022-03698-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Chen, Anqi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. | ||
650 | 4 | |a Microwire |7 (dpeaa)DE-He213 | |
650 | 4 | |a Doping gradient |7 (dpeaa)DE-He213 | |
650 | 4 | |a Temperature gradient |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gradient nanoparticle array |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surface enhanced Raman scattering |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lv, You |4 aut | |
700 | 1 | |a Wu, Yanyan |4 aut | |
700 | 1 | |a Zhu, Yuan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nanoscale research letters |d New York, NY [u.a.] : Springer, 2006 |g 17(2022), 1 vom: 20. Juni |w (DE-627)518632474 |w (DE-600)2253244-4 |x 1556-276X |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2022 |g number:1 |g day:20 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s11671-022-03698-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2022 |e 1 |b 20 |c 06 |
author_variant |
a c ac y l yl y w yw y z yz |
---|---|
matchkey_str |
article:1556276X:2022----::rdetnelnaaesrtgtfbiaerdetaoa |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s11671-022-03698-0 doi (DE-627)SPR047348127 (SPR)s11671-022-03698-0-e DE-627 ger DE-627 rakwb eng Chen, Anqi verfasserin aut Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. Microwire (dpeaa)DE-He213 Doping gradient (dpeaa)DE-He213 Temperature gradient (dpeaa)DE-He213 Gradient nanoparticle array (dpeaa)DE-He213 Surface enhanced Raman scattering (dpeaa)DE-He213 Lv, You aut Wu, Yanyan aut Zhu, Yuan aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 17(2022), 1 vom: 20. Juni (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:17 year:2022 number:1 day:20 month:06 https://dx.doi.org/10.1186/s11671-022-03698-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 1 20 06 |
spelling |
10.1186/s11671-022-03698-0 doi (DE-627)SPR047348127 (SPR)s11671-022-03698-0-e DE-627 ger DE-627 rakwb eng Chen, Anqi verfasserin aut Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. Microwire (dpeaa)DE-He213 Doping gradient (dpeaa)DE-He213 Temperature gradient (dpeaa)DE-He213 Gradient nanoparticle array (dpeaa)DE-He213 Surface enhanced Raman scattering (dpeaa)DE-He213 Lv, You aut Wu, Yanyan aut Zhu, Yuan aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 17(2022), 1 vom: 20. Juni (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:17 year:2022 number:1 day:20 month:06 https://dx.doi.org/10.1186/s11671-022-03698-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 1 20 06 |
allfields_unstemmed |
10.1186/s11671-022-03698-0 doi (DE-627)SPR047348127 (SPR)s11671-022-03698-0-e DE-627 ger DE-627 rakwb eng Chen, Anqi verfasserin aut Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. Microwire (dpeaa)DE-He213 Doping gradient (dpeaa)DE-He213 Temperature gradient (dpeaa)DE-He213 Gradient nanoparticle array (dpeaa)DE-He213 Surface enhanced Raman scattering (dpeaa)DE-He213 Lv, You aut Wu, Yanyan aut Zhu, Yuan aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 17(2022), 1 vom: 20. Juni (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:17 year:2022 number:1 day:20 month:06 https://dx.doi.org/10.1186/s11671-022-03698-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 1 20 06 |
allfieldsGer |
10.1186/s11671-022-03698-0 doi (DE-627)SPR047348127 (SPR)s11671-022-03698-0-e DE-627 ger DE-627 rakwb eng Chen, Anqi verfasserin aut Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. Microwire (dpeaa)DE-He213 Doping gradient (dpeaa)DE-He213 Temperature gradient (dpeaa)DE-He213 Gradient nanoparticle array (dpeaa)DE-He213 Surface enhanced Raman scattering (dpeaa)DE-He213 Lv, You aut Wu, Yanyan aut Zhu, Yuan aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 17(2022), 1 vom: 20. Juni (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:17 year:2022 number:1 day:20 month:06 https://dx.doi.org/10.1186/s11671-022-03698-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 1 20 06 |
allfieldsSound |
10.1186/s11671-022-03698-0 doi (DE-627)SPR047348127 (SPR)s11671-022-03698-0-e DE-627 ger DE-627 rakwb eng Chen, Anqi verfasserin aut Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. Microwire (dpeaa)DE-He213 Doping gradient (dpeaa)DE-He213 Temperature gradient (dpeaa)DE-He213 Gradient nanoparticle array (dpeaa)DE-He213 Surface enhanced Raman scattering (dpeaa)DE-He213 Lv, You aut Wu, Yanyan aut Zhu, Yuan aut Enthalten in Nanoscale research letters New York, NY [u.a.] : Springer, 2006 17(2022), 1 vom: 20. Juni (DE-627)518632474 (DE-600)2253244-4 1556-276X nnns volume:17 year:2022 number:1 day:20 month:06 https://dx.doi.org/10.1186/s11671-022-03698-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 1 20 06 |
language |
English |
source |
Enthalten in Nanoscale research letters 17(2022), 1 vom: 20. Juni volume:17 year:2022 number:1 day:20 month:06 |
sourceStr |
Enthalten in Nanoscale research letters 17(2022), 1 vom: 20. Juni volume:17 year:2022 number:1 day:20 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microwire Doping gradient Temperature gradient Gradient nanoparticle array Surface enhanced Raman scattering |
isfreeaccess_bool |
true |
container_title |
Nanoscale research letters |
authorswithroles_txt_mv |
Chen, Anqi @@aut@@ Lv, You @@aut@@ Wu, Yanyan @@aut@@ Zhu, Yuan @@aut@@ |
publishDateDaySort_date |
2022-06-20T00:00:00Z |
hierarchy_top_id |
518632474 |
id |
SPR047348127 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047348127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507212330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220621s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s11671-022-03698-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047348127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11671-022-03698-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Anqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwire</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doping gradient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature gradient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient nanoparticle array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface enhanced Raman scattering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, You</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yanyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nanoscale research letters</subfield><subfield code="d">New York, NY [u.a.] : Springer, 2006</subfield><subfield code="g">17(2022), 1 vom: 20. Juni</subfield><subfield code="w">(DE-627)518632474</subfield><subfield code="w">(DE-600)2253244-4</subfield><subfield code="x">1556-276X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s11671-022-03698-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Chen, Anqi |
spellingShingle |
Chen, Anqi misc Microwire misc Doping gradient misc Temperature gradient misc Gradient nanoparticle array misc Surface enhanced Raman scattering Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires |
authorStr |
Chen, Anqi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)518632474 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1556-276X |
topic_title |
Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires Microwire (dpeaa)DE-He213 Doping gradient (dpeaa)DE-He213 Temperature gradient (dpeaa)DE-He213 Gradient nanoparticle array (dpeaa)DE-He213 Surface enhanced Raman scattering (dpeaa)DE-He213 |
topic |
misc Microwire misc Doping gradient misc Temperature gradient misc Gradient nanoparticle array misc Surface enhanced Raman scattering |
topic_unstemmed |
misc Microwire misc Doping gradient misc Temperature gradient misc Gradient nanoparticle array misc Surface enhanced Raman scattering |
topic_browse |
misc Microwire misc Doping gradient misc Temperature gradient misc Gradient nanoparticle array misc Surface enhanced Raman scattering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanoscale research letters |
hierarchy_parent_id |
518632474 |
hierarchy_top_title |
Nanoscale research letters |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)518632474 (DE-600)2253244-4 |
title |
Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires |
ctrlnum |
(DE-627)SPR047348127 (SPR)s11671-022-03698-0-e |
title_full |
Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires |
author_sort |
Chen, Anqi |
journal |
Nanoscale research letters |
journalStr |
Nanoscale research letters |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Chen, Anqi Lv, You Wu, Yanyan Zhu, Yuan |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Anqi |
doi_str_mv |
10.1186/s11671-022-03698-0 |
title_sort |
gradient annealing as a new strategy to fabricate gradient nanoparticle array on microwires |
title_auth |
Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires |
abstract |
Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. © The Author(s) 2022 |
abstractGer |
Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires |
url |
https://dx.doi.org/10.1186/s11671-022-03698-0 |
remote_bool |
true |
author2 |
Lv, You Wu, Yanyan Zhu, Yuan |
author2Str |
Lv, You Wu, Yanyan Zhu, Yuan |
ppnlink |
518632474 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s11671-022-03698-0 |
up_date |
2024-07-04T02:49:04.334Z |
_version_ |
1803615044198465536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047348127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507212330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220621s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s11671-022-03698-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047348127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11671-022-03698-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Anqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the $ Ga^{3+} $ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwire</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Doping gradient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature gradient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient nanoparticle array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface enhanced Raman scattering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, You</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yanyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nanoscale research letters</subfield><subfield code="d">New York, NY [u.a.] : Springer, 2006</subfield><subfield code="g">17(2022), 1 vom: 20. Juni</subfield><subfield code="w">(DE-627)518632474</subfield><subfield code="w">(DE-600)2253244-4</subfield><subfield code="x">1556-276X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s11671-022-03698-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.3985195 |