An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter
Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter t...
Ausführliche Beschreibung
Autor*in: |
Chen, Jian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
An indoor fusion navigation algorithm |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Satellite navigation - Cham : Springer Nature Switzerland AG, 2020, 3(2022), 1 vom: 27. Juni |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2022 ; number:1 ; day:27 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s43020-022-00073-3 |
---|
Katalog-ID: |
SPR047415460 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047415460 | ||
003 | DE-627 | ||
005 | 20230507215302.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220628s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s43020-022-00073-3 |2 doi | |
035 | |a (DE-627)SPR047415460 | ||
035 | |a (SPR)s43020-022-00073-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Chen, Jian |e verfasserin |0 (orcid)0000-0003-0987-1665 |4 aut | |
245 | 1 | 3 | |a An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. | ||
650 | 4 | |a An indoor fusion navigation algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a HV-derivative dynamic time warping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Chicken particle filter |7 (dpeaa)DE-He213 | |
700 | 1 | |a Song, Shaojing |4 aut | |
700 | 1 | |a Gong, Yumei |4 aut | |
700 | 1 | |a Zhang, Shanxin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Satellite navigation |d Cham : Springer Nature Switzerland AG, 2020 |g 3(2022), 1 vom: 27. Juni |w (DE-627)1696030285 |w (DE-600)3018439-3 |x 2662-1363 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2022 |g number:1 |g day:27 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s43020-022-00073-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2022 |e 1 |b 27 |c 06 |
author_variant |
j c jc s s ss y g yg s z sz |
---|---|
matchkey_str |
article:26621363:2022----::nnoruinaiainloihuigveiaieyaitmwrig |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s43020-022-00073-3 doi (DE-627)SPR047415460 (SPR)s43020-022-00073-3-e DE-627 ger DE-627 rakwb eng Chen, Jian verfasserin (orcid)0000-0003-0987-1665 aut An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. An indoor fusion navigation algorithm (dpeaa)DE-He213 HV-derivative dynamic time warping (dpeaa)DE-He213 Chicken particle filter (dpeaa)DE-He213 Song, Shaojing aut Gong, Yumei aut Zhang, Shanxin aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 27. Juni (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:27 month:06 https://dx.doi.org/10.1186/s43020-022-00073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 27 06 |
spelling |
10.1186/s43020-022-00073-3 doi (DE-627)SPR047415460 (SPR)s43020-022-00073-3-e DE-627 ger DE-627 rakwb eng Chen, Jian verfasserin (orcid)0000-0003-0987-1665 aut An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. An indoor fusion navigation algorithm (dpeaa)DE-He213 HV-derivative dynamic time warping (dpeaa)DE-He213 Chicken particle filter (dpeaa)DE-He213 Song, Shaojing aut Gong, Yumei aut Zhang, Shanxin aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 27. Juni (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:27 month:06 https://dx.doi.org/10.1186/s43020-022-00073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 27 06 |
allfields_unstemmed |
10.1186/s43020-022-00073-3 doi (DE-627)SPR047415460 (SPR)s43020-022-00073-3-e DE-627 ger DE-627 rakwb eng Chen, Jian verfasserin (orcid)0000-0003-0987-1665 aut An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. An indoor fusion navigation algorithm (dpeaa)DE-He213 HV-derivative dynamic time warping (dpeaa)DE-He213 Chicken particle filter (dpeaa)DE-He213 Song, Shaojing aut Gong, Yumei aut Zhang, Shanxin aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 27. Juni (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:27 month:06 https://dx.doi.org/10.1186/s43020-022-00073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 27 06 |
allfieldsGer |
10.1186/s43020-022-00073-3 doi (DE-627)SPR047415460 (SPR)s43020-022-00073-3-e DE-627 ger DE-627 rakwb eng Chen, Jian verfasserin (orcid)0000-0003-0987-1665 aut An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. An indoor fusion navigation algorithm (dpeaa)DE-He213 HV-derivative dynamic time warping (dpeaa)DE-He213 Chicken particle filter (dpeaa)DE-He213 Song, Shaojing aut Gong, Yumei aut Zhang, Shanxin aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 27. Juni (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:27 month:06 https://dx.doi.org/10.1186/s43020-022-00073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 27 06 |
allfieldsSound |
10.1186/s43020-022-00073-3 doi (DE-627)SPR047415460 (SPR)s43020-022-00073-3-e DE-627 ger DE-627 rakwb eng Chen, Jian verfasserin (orcid)0000-0003-0987-1665 aut An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. An indoor fusion navigation algorithm (dpeaa)DE-He213 HV-derivative dynamic time warping (dpeaa)DE-He213 Chicken particle filter (dpeaa)DE-He213 Song, Shaojing aut Gong, Yumei aut Zhang, Shanxin aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 27. Juni (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:27 month:06 https://dx.doi.org/10.1186/s43020-022-00073-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 27 06 |
language |
English |
source |
Enthalten in Satellite navigation 3(2022), 1 vom: 27. Juni volume:3 year:2022 number:1 day:27 month:06 |
sourceStr |
Enthalten in Satellite navigation 3(2022), 1 vom: 27. Juni volume:3 year:2022 number:1 day:27 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
An indoor fusion navigation algorithm HV-derivative dynamic time warping Chicken particle filter |
isfreeaccess_bool |
true |
container_title |
Satellite navigation |
authorswithroles_txt_mv |
Chen, Jian @@aut@@ Song, Shaojing @@aut@@ Gong, Yumei @@aut@@ Zhang, Shanxin @@aut@@ |
publishDateDaySort_date |
2022-06-27T00:00:00Z |
hierarchy_top_id |
1696030285 |
id |
SPR047415460 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047415460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507215302.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220628s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43020-022-00073-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047415460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43020-022-00073-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0987-1665</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">An indoor fusion navigation algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HV-derivative dynamic time warping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chicken particle filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Shaojing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Yumei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shanxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Satellite navigation</subfield><subfield code="d">Cham : Springer Nature Switzerland AG, 2020</subfield><subfield code="g">3(2022), 1 vom: 27. Juni</subfield><subfield code="w">(DE-627)1696030285</subfield><subfield code="w">(DE-600)3018439-3</subfield><subfield code="x">2662-1363</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43020-022-00073-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Chen, Jian |
spellingShingle |
Chen, Jian misc An indoor fusion navigation algorithm misc HV-derivative dynamic time warping misc Chicken particle filter An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter |
authorStr |
Chen, Jian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1696030285 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2662-1363 |
topic_title |
An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter An indoor fusion navigation algorithm (dpeaa)DE-He213 HV-derivative dynamic time warping (dpeaa)DE-He213 Chicken particle filter (dpeaa)DE-He213 |
topic |
misc An indoor fusion navigation algorithm misc HV-derivative dynamic time warping misc Chicken particle filter |
topic_unstemmed |
misc An indoor fusion navigation algorithm misc HV-derivative dynamic time warping misc Chicken particle filter |
topic_browse |
misc An indoor fusion navigation algorithm misc HV-derivative dynamic time warping misc Chicken particle filter |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Satellite navigation |
hierarchy_parent_id |
1696030285 |
hierarchy_top_title |
Satellite navigation |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1696030285 (DE-600)3018439-3 |
title |
An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter |
ctrlnum |
(DE-627)SPR047415460 (SPR)s43020-022-00073-3-e |
title_full |
An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter |
author_sort |
Chen, Jian |
journal |
Satellite navigation |
journalStr |
Satellite navigation |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Chen, Jian Song, Shaojing Gong, Yumei Zhang, Shanxin |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Jian |
doi_str_mv |
10.1186/s43020-022-00073-3 |
normlink |
(ORCID)0000-0003-0987-1665 |
normlink_prefix_str_mv |
(orcid)0000-0003-0987-1665 |
title_sort |
indoor fusion navigation algorithm using hv-derivative dynamic time warping and the chicken particle filter |
title_auth |
An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter |
abstract |
Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. © The Author(s) 2022 |
abstractGer |
Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. © The Author(s) 2022 |
abstract_unstemmed |
Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
1 |
title_short |
An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter |
url |
https://dx.doi.org/10.1186/s43020-022-00073-3 |
remote_bool |
true |
author2 |
Song, Shaojing Gong, Yumei Zhang, Shanxin |
author2Str |
Song, Shaojing Gong, Yumei Zhang, Shanxin |
ppnlink |
1696030285 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s43020-022-00073-3 |
up_date |
2024-07-04T03:02:52.928Z |
_version_ |
1803615913041199104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047415460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507215302.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220628s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43020-022-00073-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047415460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43020-022-00073-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0987-1665</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The use of dead reckoning and fingerprint matching for navigation is a widespread technical method. However, fingerprint mismatching and low fusion accuracy are prevalent issues in indoor navigation systems. This work presents an improved dynamic time warping and a chicken particle filter to handle these two challenges. To generate the Horizontal and Vertical (HV) fingerprint, the pitch and roll are employed instead of the original fingerprint intensity to extract the horizontal and vertical components of the magnetic field fingerprint. Derivative dynamic time warping employs the HV fingerprint in its derivative form, which receives higher-level features because of the consideration of fingerprint shape information. Chicken Swarm Optimization (CSO) is used to enhance particle weights, which minimizes position error to tackle the particle impoverishment problem for a fusion navigation system. The results of the experiments suggest that the enhanced algorithm can improve indoor navigation accuracy significantly.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">An indoor fusion navigation algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HV-derivative dynamic time warping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chicken particle filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Shaojing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Yumei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shanxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Satellite navigation</subfield><subfield code="d">Cham : Springer Nature Switzerland AG, 2020</subfield><subfield code="g">3(2022), 1 vom: 27. Juni</subfield><subfield code="w">(DE-627)1696030285</subfield><subfield code="w">(DE-600)3018439-3</subfield><subfield code="x">2662-1363</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43020-022-00073-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.3988237 |