Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe
Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag N...
Ausführliche Beschreibung
Autor*in: |
Li, Nan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Japan Society for Analytical Chemistry 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Analytical sciences - [Cham] : Springer International Publishing, 1985, 37(2021), 10 vom: 19. März, Seite 1407-1412 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2021 ; number:10 ; day:19 ; month:03 ; pages:1407-1412 |
Links: |
---|
DOI / URN: |
10.2116/analsci.21P047 |
---|
Katalog-ID: |
SPR047454822 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047454822 | ||
003 | DE-627 | ||
005 | 20230809064822.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220630s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2116/analsci.21P047 |2 doi | |
035 | |a (DE-627)SPR047454822 | ||
035 | |a (SPR)analsci.21P047-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, Nan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Japan Society for Analytical Chemistry 2021 | ||
520 | |a Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. | ||
650 | 4 | |a Ag nanoparticles |7 (dpeaa)DE-He213 | |
650 | 4 | |a cinnabar |7 (dpeaa)DE-He213 | |
650 | 4 | |a crystal violet |7 (dpeaa)DE-He213 | |
650 | 4 | |a mercury ion |7 (dpeaa)DE-He213 | |
700 | 1 | |a Han, Siqingaowa |4 aut | |
700 | 1 | |a Lin, Shuang |4 aut | |
700 | 1 | |a Sha, Xuan-yu |4 aut | |
700 | 1 | |a Hasi, Wuliji |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Analytical sciences |d [Cham] : Springer International Publishing, 1985 |g 37(2021), 10 vom: 19. März, Seite 1407-1412 |w (DE-627)300895925 |w (DE-600)1483376-1 |x 1348-2246 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2021 |g number:10 |g day:19 |g month:03 |g pages:1407-1412 |
856 | 4 | 0 | |u https://dx.doi.org/10.2116/analsci.21P047 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 37 |j 2021 |e 10 |b 19 |c 03 |h 1407-1412 |
author_variant |
n l nl s h sh s l sl x y s xys w h wh |
---|---|
matchkey_str |
article:13482246:2021----::eetooslbeecricnaauigc |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.2116/analsci.21P047 doi (DE-627)SPR047454822 (SPR)analsci.21P047-e DE-627 ger DE-627 rakwb eng Li, Nan verfasserin aut Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japan Society for Analytical Chemistry 2021 Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. Ag nanoparticles (dpeaa)DE-He213 cinnabar (dpeaa)DE-He213 crystal violet (dpeaa)DE-He213 mercury ion (dpeaa)DE-He213 Han, Siqingaowa aut Lin, Shuang aut Sha, Xuan-yu aut Hasi, Wuliji aut Enthalten in Analytical sciences [Cham] : Springer International Publishing, 1985 37(2021), 10 vom: 19. März, Seite 1407-1412 (DE-627)300895925 (DE-600)1483376-1 1348-2246 nnns volume:37 year:2021 number:10 day:19 month:03 pages:1407-1412 https://dx.doi.org/10.2116/analsci.21P047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 37 2021 10 19 03 1407-1412 |
spelling |
10.2116/analsci.21P047 doi (DE-627)SPR047454822 (SPR)analsci.21P047-e DE-627 ger DE-627 rakwb eng Li, Nan verfasserin aut Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japan Society for Analytical Chemistry 2021 Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. Ag nanoparticles (dpeaa)DE-He213 cinnabar (dpeaa)DE-He213 crystal violet (dpeaa)DE-He213 mercury ion (dpeaa)DE-He213 Han, Siqingaowa aut Lin, Shuang aut Sha, Xuan-yu aut Hasi, Wuliji aut Enthalten in Analytical sciences [Cham] : Springer International Publishing, 1985 37(2021), 10 vom: 19. März, Seite 1407-1412 (DE-627)300895925 (DE-600)1483376-1 1348-2246 nnns volume:37 year:2021 number:10 day:19 month:03 pages:1407-1412 https://dx.doi.org/10.2116/analsci.21P047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 37 2021 10 19 03 1407-1412 |
allfields_unstemmed |
10.2116/analsci.21P047 doi (DE-627)SPR047454822 (SPR)analsci.21P047-e DE-627 ger DE-627 rakwb eng Li, Nan verfasserin aut Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japan Society for Analytical Chemistry 2021 Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. Ag nanoparticles (dpeaa)DE-He213 cinnabar (dpeaa)DE-He213 crystal violet (dpeaa)DE-He213 mercury ion (dpeaa)DE-He213 Han, Siqingaowa aut Lin, Shuang aut Sha, Xuan-yu aut Hasi, Wuliji aut Enthalten in Analytical sciences [Cham] : Springer International Publishing, 1985 37(2021), 10 vom: 19. März, Seite 1407-1412 (DE-627)300895925 (DE-600)1483376-1 1348-2246 nnns volume:37 year:2021 number:10 day:19 month:03 pages:1407-1412 https://dx.doi.org/10.2116/analsci.21P047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 37 2021 10 19 03 1407-1412 |
allfieldsGer |
10.2116/analsci.21P047 doi (DE-627)SPR047454822 (SPR)analsci.21P047-e DE-627 ger DE-627 rakwb eng Li, Nan verfasserin aut Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japan Society for Analytical Chemistry 2021 Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. Ag nanoparticles (dpeaa)DE-He213 cinnabar (dpeaa)DE-He213 crystal violet (dpeaa)DE-He213 mercury ion (dpeaa)DE-He213 Han, Siqingaowa aut Lin, Shuang aut Sha, Xuan-yu aut Hasi, Wuliji aut Enthalten in Analytical sciences [Cham] : Springer International Publishing, 1985 37(2021), 10 vom: 19. März, Seite 1407-1412 (DE-627)300895925 (DE-600)1483376-1 1348-2246 nnns volume:37 year:2021 number:10 day:19 month:03 pages:1407-1412 https://dx.doi.org/10.2116/analsci.21P047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 37 2021 10 19 03 1407-1412 |
allfieldsSound |
10.2116/analsci.21P047 doi (DE-627)SPR047454822 (SPR)analsci.21P047-e DE-627 ger DE-627 rakwb eng Li, Nan verfasserin aut Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Japan Society for Analytical Chemistry 2021 Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. Ag nanoparticles (dpeaa)DE-He213 cinnabar (dpeaa)DE-He213 crystal violet (dpeaa)DE-He213 mercury ion (dpeaa)DE-He213 Han, Siqingaowa aut Lin, Shuang aut Sha, Xuan-yu aut Hasi, Wuliji aut Enthalten in Analytical sciences [Cham] : Springer International Publishing, 1985 37(2021), 10 vom: 19. März, Seite 1407-1412 (DE-627)300895925 (DE-600)1483376-1 1348-2246 nnns volume:37 year:2021 number:10 day:19 month:03 pages:1407-1412 https://dx.doi.org/10.2116/analsci.21P047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 37 2021 10 19 03 1407-1412 |
language |
English |
source |
Enthalten in Analytical sciences 37(2021), 10 vom: 19. März, Seite 1407-1412 volume:37 year:2021 number:10 day:19 month:03 pages:1407-1412 |
sourceStr |
Enthalten in Analytical sciences 37(2021), 10 vom: 19. März, Seite 1407-1412 volume:37 year:2021 number:10 day:19 month:03 pages:1407-1412 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ag nanoparticles cinnabar crystal violet mercury ion |
isfreeaccess_bool |
false |
container_title |
Analytical sciences |
authorswithroles_txt_mv |
Li, Nan @@aut@@ Han, Siqingaowa @@aut@@ Lin, Shuang @@aut@@ Sha, Xuan-yu @@aut@@ Hasi, Wuliji @@aut@@ |
publishDateDaySort_date |
2021-03-19T00:00:00Z |
hierarchy_top_id |
300895925 |
id |
SPR047454822 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047454822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230809064822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220630s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2116/analsci.21P047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047454822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)analsci.21P047-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Nan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Japan Society for Analytical Chemistry 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ag nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cinnabar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crystal violet</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mercury ion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Siqingaowa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Shuang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sha, Xuan-yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasi, Wuliji</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Analytical sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 1985</subfield><subfield code="g">37(2021), 10 vom: 19. März, Seite 1407-1412</subfield><subfield code="w">(DE-627)300895925</subfield><subfield code="w">(DE-600)1483376-1</subfield><subfield code="x">1348-2246</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10</subfield><subfield code="g">day:19</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1407-1412</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2116/analsci.21P047</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2021</subfield><subfield code="e">10</subfield><subfield code="b">19</subfield><subfield code="c">03</subfield><subfield code="h">1407-1412</subfield></datafield></record></collection>
|
author |
Li, Nan |
spellingShingle |
Li, Nan misc Ag nanoparticles misc cinnabar misc crystal violet misc mercury ion Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe |
authorStr |
Li, Nan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300895925 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1348-2246 |
topic_title |
Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe Ag nanoparticles (dpeaa)DE-He213 cinnabar (dpeaa)DE-He213 crystal violet (dpeaa)DE-He213 mercury ion (dpeaa)DE-He213 |
topic |
misc Ag nanoparticles misc cinnabar misc crystal violet misc mercury ion |
topic_unstemmed |
misc Ag nanoparticles misc cinnabar misc crystal violet misc mercury ion |
topic_browse |
misc Ag nanoparticles misc cinnabar misc crystal violet misc mercury ion |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Analytical sciences |
hierarchy_parent_id |
300895925 |
hierarchy_top_title |
Analytical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300895925 (DE-600)1483376-1 |
title |
Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe |
ctrlnum |
(DE-627)SPR047454822 (SPR)analsci.21P047-e |
title_full |
Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe |
author_sort |
Li, Nan |
journal |
Analytical sciences |
journalStr |
Analytical sciences |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1407 |
author_browse |
Li, Nan Han, Siqingaowa Lin, Shuang Sha, Xuan-yu Hasi, Wuliji |
container_volume |
37 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Nan |
doi_str_mv |
10.2116/analsci.21P047 |
title_sort |
detection of soluble mercury in cinnabar using a cv-ag nps sers probe |
title_auth |
Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe |
abstract |
Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. © The Japan Society for Analytical Chemistry 2021 |
abstractGer |
Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. © The Japan Society for Analytical Chemistry 2021 |
abstract_unstemmed |
Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism. © The Japan Society for Analytical Chemistry 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe |
url |
https://dx.doi.org/10.2116/analsci.21P047 |
remote_bool |
true |
author2 |
Han, Siqingaowa Lin, Shuang Sha, Xuan-yu Hasi, Wuliji |
author2Str |
Han, Siqingaowa Lin, Shuang Sha, Xuan-yu Hasi, Wuliji |
ppnlink |
300895925 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.2116/analsci.21P047 |
up_date |
2024-07-04T03:10:48.187Z |
_version_ |
1803616411380088832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047454822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230809064822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220630s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2116/analsci.21P047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047454822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)analsci.21P047-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Nan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection of Soluble Mercury in Cinnabar Using a CV-Ag NPs SERS Probe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Japan Society for Analytical Chemistry 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the current work a uniform morphological Ag nanoparticles (Ag NPs) were prepared with ascorbic acid as a reducing agent and citrate as a stabilizer. The surface of Ag NPs modified by crystal violet (CV) and potassium iodide (KI) was used as an aggregation agent to obtain CV modified Ag NPs (CV-Ag NPs) probes for detecting mercury ions. The mercury ions could be reduced to mercury molecules by citrate, and then deposited on the surface of Ag NPs, leading to the separation of CV molecules from the surface of Ag NPs. Therefore, the SERS signal intensity of CV decreased with the increase of the $ Hg^{2+} $ concentration and the concentration of $ Hg^{2+} $ was in the range of 1 × $ 10^{–11} $ to 1 × $ 10^{–5} $ M. Taking the change of the characteristic peak intensity of CV at 913 $ cm^{–1} $ as a reference, the SERS spectrum intensity of CV has a linear relationship with the $ Hg^{2+} $ concentration. The equation is y =–333.55x + 1343.05, where the linear correlation coefficient is R2 = 0.980, and the recovery rate is between 84.20 to 105.60%. Finally, the CV-Ag NPs probe was used to quickly detect soluble mercury in cinnabar. Compared with the conventional large-scale instrument detection method, this simple and fast method, can be applied for rapid detection of soluble mercury, and has a certain significance for concerning the research of mineral medicine processing mechanism.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ag nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cinnabar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crystal violet</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mercury ion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Siqingaowa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Shuang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sha, Xuan-yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasi, Wuliji</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Analytical sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 1985</subfield><subfield code="g">37(2021), 10 vom: 19. März, Seite 1407-1412</subfield><subfield code="w">(DE-627)300895925</subfield><subfield code="w">(DE-600)1483376-1</subfield><subfield code="x">1348-2246</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10</subfield><subfield code="g">day:19</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1407-1412</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2116/analsci.21P047</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2021</subfield><subfield code="e">10</subfield><subfield code="b">19</subfield><subfield code="c">03</subfield><subfield code="h">1407-1412</subfield></datafield></record></collection>
|
score |
7.402669 |