Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8
The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI)...
Ausführliche Beschreibung
Autor*in: |
Nishiyama, Gaku [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Earth, planets and space - Heidelberg : Springer, 1998, 74(2022), 1 vom: 04. Juli |
---|---|
Übergeordnetes Werk: |
volume:74 ; year:2022 ; number:1 ; day:04 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s40623-022-01662-x |
---|
Katalog-ID: |
SPR047493593 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047493593 | ||
003 | DE-627 | ||
005 | 20230507223347.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220705s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40623-022-01662-x |2 doi | |
035 | |a (DE-627)SPR047493593 | ||
035 | |a (SPR)s40623-022-01662-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Nishiyama, Gaku |e verfasserin |0 (orcid)0000-0001-6565-349X |4 aut | |
245 | 1 | 0 | |a Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract | ||
650 | 4 | |a Meteorological satellite |7 (dpeaa)DE-He213 | |
650 | 4 | |a Moon |7 (dpeaa)DE-He213 | |
650 | 4 | |a Infrared spectrum |7 (dpeaa)DE-He213 | |
650 | 4 | |a Regolith |7 (dpeaa)DE-He213 | |
650 | 4 | |a Space telescope |7 (dpeaa)DE-He213 | |
650 | 4 | |a Himawari-8 |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lunar surface roughness |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diviner |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rock abundance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Anisothermality |7 (dpeaa)DE-He213 | |
700 | 1 | |a Namiki, Noriyuki |4 aut | |
700 | 1 | |a Sugita, Seiji |4 aut | |
700 | 1 | |a Uno, Shinsuke |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Earth, planets and space |d Heidelberg : Springer, 1998 |g 74(2022), 1 vom: 04. Juli |w (DE-627)353898597 |w (DE-600)2087663-4 |x 1880-5981 |7 nnns |
773 | 1 | 8 | |g volume:74 |g year:2022 |g number:1 |g day:04 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40623-022-01662-x |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 74 |j 2022 |e 1 |b 04 |c 07 |
author_variant |
g n gn n n nn s s ss s u su |
---|---|
matchkey_str |
article:18805981:2022----::tlztooaeerlgclaeltaapctlsoehlnriifae |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s40623-022-01662-x doi (DE-627)SPR047493593 (SPR)s40623-022-01662-x-e DE-627 ger DE-627 rakwb eng Nishiyama, Gaku verfasserin (orcid)0000-0001-6565-349X aut Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract Meteorological satellite (dpeaa)DE-He213 Moon (dpeaa)DE-He213 Infrared spectrum (dpeaa)DE-He213 Regolith (dpeaa)DE-He213 Space telescope (dpeaa)DE-He213 Himawari-8 (dpeaa)DE-He213 Lunar surface roughness (dpeaa)DE-He213 Diviner (dpeaa)DE-He213 Rock abundance (dpeaa)DE-He213 Anisothermality (dpeaa)DE-He213 Namiki, Noriyuki aut Sugita, Seiji aut Uno, Shinsuke aut Enthalten in Earth, planets and space Heidelberg : Springer, 1998 74(2022), 1 vom: 04. Juli (DE-627)353898597 (DE-600)2087663-4 1880-5981 nnns volume:74 year:2022 number:1 day:04 month:07 https://dx.doi.org/10.1186/s40623-022-01662-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2022 1 04 07 |
spelling |
10.1186/s40623-022-01662-x doi (DE-627)SPR047493593 (SPR)s40623-022-01662-x-e DE-627 ger DE-627 rakwb eng Nishiyama, Gaku verfasserin (orcid)0000-0001-6565-349X aut Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract Meteorological satellite (dpeaa)DE-He213 Moon (dpeaa)DE-He213 Infrared spectrum (dpeaa)DE-He213 Regolith (dpeaa)DE-He213 Space telescope (dpeaa)DE-He213 Himawari-8 (dpeaa)DE-He213 Lunar surface roughness (dpeaa)DE-He213 Diviner (dpeaa)DE-He213 Rock abundance (dpeaa)DE-He213 Anisothermality (dpeaa)DE-He213 Namiki, Noriyuki aut Sugita, Seiji aut Uno, Shinsuke aut Enthalten in Earth, planets and space Heidelberg : Springer, 1998 74(2022), 1 vom: 04. Juli (DE-627)353898597 (DE-600)2087663-4 1880-5981 nnns volume:74 year:2022 number:1 day:04 month:07 https://dx.doi.org/10.1186/s40623-022-01662-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2022 1 04 07 |
allfields_unstemmed |
10.1186/s40623-022-01662-x doi (DE-627)SPR047493593 (SPR)s40623-022-01662-x-e DE-627 ger DE-627 rakwb eng Nishiyama, Gaku verfasserin (orcid)0000-0001-6565-349X aut Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract Meteorological satellite (dpeaa)DE-He213 Moon (dpeaa)DE-He213 Infrared spectrum (dpeaa)DE-He213 Regolith (dpeaa)DE-He213 Space telescope (dpeaa)DE-He213 Himawari-8 (dpeaa)DE-He213 Lunar surface roughness (dpeaa)DE-He213 Diviner (dpeaa)DE-He213 Rock abundance (dpeaa)DE-He213 Anisothermality (dpeaa)DE-He213 Namiki, Noriyuki aut Sugita, Seiji aut Uno, Shinsuke aut Enthalten in Earth, planets and space Heidelberg : Springer, 1998 74(2022), 1 vom: 04. Juli (DE-627)353898597 (DE-600)2087663-4 1880-5981 nnns volume:74 year:2022 number:1 day:04 month:07 https://dx.doi.org/10.1186/s40623-022-01662-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2022 1 04 07 |
allfieldsGer |
10.1186/s40623-022-01662-x doi (DE-627)SPR047493593 (SPR)s40623-022-01662-x-e DE-627 ger DE-627 rakwb eng Nishiyama, Gaku verfasserin (orcid)0000-0001-6565-349X aut Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract Meteorological satellite (dpeaa)DE-He213 Moon (dpeaa)DE-He213 Infrared spectrum (dpeaa)DE-He213 Regolith (dpeaa)DE-He213 Space telescope (dpeaa)DE-He213 Himawari-8 (dpeaa)DE-He213 Lunar surface roughness (dpeaa)DE-He213 Diviner (dpeaa)DE-He213 Rock abundance (dpeaa)DE-He213 Anisothermality (dpeaa)DE-He213 Namiki, Noriyuki aut Sugita, Seiji aut Uno, Shinsuke aut Enthalten in Earth, planets and space Heidelberg : Springer, 1998 74(2022), 1 vom: 04. Juli (DE-627)353898597 (DE-600)2087663-4 1880-5981 nnns volume:74 year:2022 number:1 day:04 month:07 https://dx.doi.org/10.1186/s40623-022-01662-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2022 1 04 07 |
allfieldsSound |
10.1186/s40623-022-01662-x doi (DE-627)SPR047493593 (SPR)s40623-022-01662-x-e DE-627 ger DE-627 rakwb eng Nishiyama, Gaku verfasserin (orcid)0000-0001-6565-349X aut Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract Meteorological satellite (dpeaa)DE-He213 Moon (dpeaa)DE-He213 Infrared spectrum (dpeaa)DE-He213 Regolith (dpeaa)DE-He213 Space telescope (dpeaa)DE-He213 Himawari-8 (dpeaa)DE-He213 Lunar surface roughness (dpeaa)DE-He213 Diviner (dpeaa)DE-He213 Rock abundance (dpeaa)DE-He213 Anisothermality (dpeaa)DE-He213 Namiki, Noriyuki aut Sugita, Seiji aut Uno, Shinsuke aut Enthalten in Earth, planets and space Heidelberg : Springer, 1998 74(2022), 1 vom: 04. Juli (DE-627)353898597 (DE-600)2087663-4 1880-5981 nnns volume:74 year:2022 number:1 day:04 month:07 https://dx.doi.org/10.1186/s40623-022-01662-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2022 1 04 07 |
language |
English |
source |
Enthalten in Earth, planets and space 74(2022), 1 vom: 04. Juli volume:74 year:2022 number:1 day:04 month:07 |
sourceStr |
Enthalten in Earth, planets and space 74(2022), 1 vom: 04. Juli volume:74 year:2022 number:1 day:04 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Meteorological satellite Moon Infrared spectrum Regolith Space telescope Himawari-8 Lunar surface roughness Diviner Rock abundance Anisothermality |
isfreeaccess_bool |
true |
container_title |
Earth, planets and space |
authorswithroles_txt_mv |
Nishiyama, Gaku @@aut@@ Namiki, Noriyuki @@aut@@ Sugita, Seiji @@aut@@ Uno, Shinsuke @@aut@@ |
publishDateDaySort_date |
2022-07-04T00:00:00Z |
hierarchy_top_id |
353898597 |
id |
SPR047493593 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047493593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507223347.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220705s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40623-022-01662-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047493593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40623-022-01662-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nishiyama, Gaku</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6565-349X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meteorological satellite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moon</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrared spectrum</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regolith</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space telescope</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Himawari-8</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lunar surface roughness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diviner</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rock abundance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisothermality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Namiki, Noriyuki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sugita, Seiji</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uno, Shinsuke</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Earth, planets and space</subfield><subfield code="d">Heidelberg : Springer, 1998</subfield><subfield code="g">74(2022), 1 vom: 04. Juli</subfield><subfield code="w">(DE-627)353898597</subfield><subfield code="w">(DE-600)2087663-4</subfield><subfield code="x">1880-5981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40623-022-01662-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Nishiyama, Gaku |
spellingShingle |
Nishiyama, Gaku misc Meteorological satellite misc Moon misc Infrared spectrum misc Regolith misc Space telescope misc Himawari-8 misc Lunar surface roughness misc Diviner misc Rock abundance misc Anisothermality Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 |
authorStr |
Nishiyama, Gaku |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)353898597 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1880-5981 |
topic_title |
Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 Meteorological satellite (dpeaa)DE-He213 Moon (dpeaa)DE-He213 Infrared spectrum (dpeaa)DE-He213 Regolith (dpeaa)DE-He213 Space telescope (dpeaa)DE-He213 Himawari-8 (dpeaa)DE-He213 Lunar surface roughness (dpeaa)DE-He213 Diviner (dpeaa)DE-He213 Rock abundance (dpeaa)DE-He213 Anisothermality (dpeaa)DE-He213 |
topic |
misc Meteorological satellite misc Moon misc Infrared spectrum misc Regolith misc Space telescope misc Himawari-8 misc Lunar surface roughness misc Diviner misc Rock abundance misc Anisothermality |
topic_unstemmed |
misc Meteorological satellite misc Moon misc Infrared spectrum misc Regolith misc Space telescope misc Himawari-8 misc Lunar surface roughness misc Diviner misc Rock abundance misc Anisothermality |
topic_browse |
misc Meteorological satellite misc Moon misc Infrared spectrum misc Regolith misc Space telescope misc Himawari-8 misc Lunar surface roughness misc Diviner misc Rock abundance misc Anisothermality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Earth, planets and space |
hierarchy_parent_id |
353898597 |
hierarchy_top_title |
Earth, planets and space |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)353898597 (DE-600)2087663-4 |
title |
Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 |
ctrlnum |
(DE-627)SPR047493593 (SPR)s40623-022-01662-x-e |
title_full |
Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 |
author_sort |
Nishiyama, Gaku |
journal |
Earth, planets and space |
journalStr |
Earth, planets and space |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Nishiyama, Gaku Namiki, Noriyuki Sugita, Seiji Uno, Shinsuke |
container_volume |
74 |
format_se |
Elektronische Aufsätze |
author-letter |
Nishiyama, Gaku |
doi_str_mv |
10.1186/s40623-022-01662-x |
normlink |
(ORCID)0000-0001-6565-349X |
normlink_prefix_str_mv |
(orcid)0000-0001-6565-349X |
title_sort |
utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by himawari-8 |
title_auth |
Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 |
abstract |
The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract © The Author(s) 2022 |
abstractGer |
The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract © The Author(s) 2022 |
abstract_unstemmed |
The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8 |
url |
https://dx.doi.org/10.1186/s40623-022-01662-x |
remote_bool |
true |
author2 |
Namiki, Noriyuki Sugita, Seiji Uno, Shinsuke |
author2Str |
Namiki, Noriyuki Sugita, Seiji Uno, Shinsuke |
ppnlink |
353898597 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40623-022-01662-x |
up_date |
2024-07-04T03:18:42.859Z |
_version_ |
1803616909109755904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047493593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507223347.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220705s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40623-022-01662-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047493593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40623-022-01662-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nishiyama, Gaku</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6565-349X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Japanese meteorological satellite Himawari-8 has captured the Earth’s atmosphere and stars, planets, and the Moon in its field of view, enabling us to capture their spectroscopy with 16 bands from visible to mid-infrared wavelengths. The nine infrared bands in the Advanced Himawari Imager (AHI) onboard Himawari-8 are unique in spaceborne observations and are potentially useful for lunar science. In addition, infrared bands of AHI cover wavelengths similar to those of other interplanetary instruments and thus are useful for calibrations. However, infrared AHI data have not yet been investigated in planetary science. To confirm the utility of AHI for planetary science, we develop a procedure to retrieve the lunar infrared spectrum and compare it with thermal conduction simulations. Our analysis shows that lunar brightness temperature curves can be obtained in the morning, evening, and nighttime for all nine bands. Particularly at 8.5 μm, they show a good agreement with previous observations by the Diviner radiometer onboard NASA’s Lunar Reconnaissance Orbiter. As pointed out previously, the brightness temperatures differ between the bands, indicating temperature mixing within a pixel. Our simulation suggests that surface roughness as steep as those measured at the Apollo landing sites significantly contributes to the observed brightness temperature differences in the morning and evening; however, nighttime brightness temperatures are greatly affected by rocks with higher thermal inertia than the regolith. The rock abundances are estimated to be 0.18–0.48% and 6.1–10.3% at the equator and within Tycho crater, respectively. Our estimations from AHI data are consistent with those of Diviner. These results support the idea that AHI potentially serves as a space telescope for future lunar and planetary sciences, for example, for constraining water content on the lunar surface. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meteorological satellite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moon</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrared spectrum</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regolith</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space telescope</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Himawari-8</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lunar surface roughness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diviner</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rock abundance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisothermality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Namiki, Noriyuki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sugita, Seiji</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uno, Shinsuke</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Earth, planets and space</subfield><subfield code="d">Heidelberg : Springer, 1998</subfield><subfield code="g">74(2022), 1 vom: 04. Juli</subfield><subfield code="w">(DE-627)353898597</subfield><subfield code="w">(DE-600)2087663-4</subfield><subfield code="x">1880-5981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40623-022-01662-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4008694 |