Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness
Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a specia...
Ausführliche Beschreibung
Autor*in: |
Pan, Fei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Nano-Micro letters - Berlin : Springer, 2009, 14(2022), 1 vom: 05. Juli |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:1 ; day:05 ; month:07 |
Links: |
---|
DOI / URN: |
10.1007/s40820-022-00869-7 |
---|
Katalog-ID: |
SPR047504773 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047504773 | ||
003 | DE-627 | ||
005 | 20230509123528.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220706s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40820-022-00869-7 |2 doi | |
035 | |a (DE-627)SPR047504773 | ||
035 | |a (SPR)s40820-022-00869-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Pan, Fei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. | ||
520 | |a Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. | ||
650 | 4 | |a Electromagnetic wave absorption |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ti |7 (dpeaa)DE-He213 | |
650 | 4 | |a CNT |7 (dpeaa)DE-He213 | |
650 | 4 | |a MXene |7 (dpeaa)DE-He213 | |
650 | 4 | |a Highly oriented Ni chains |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electromagnetic cooperation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetic coupling |7 (dpeaa)DE-He213 | |
700 | 1 | |a Rao, Yanping |4 aut | |
700 | 1 | |a Batalu, Dan |4 aut | |
700 | 1 | |a Cai, Lei |4 aut | |
700 | 1 | |a Dong, Yanyan |4 aut | |
700 | 1 | |a Zhu, Xiaojie |4 aut | |
700 | 1 | |a Shi, Yuyang |4 aut | |
700 | 1 | |a Shi, Zhong |4 aut | |
700 | 1 | |a Liu, Yaowen |4 aut | |
700 | 1 | |a Lu, Wei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nano-Micro letters |d Berlin : Springer, 2009 |g 14(2022), 1 vom: 05. Juli |w (DE-627)680319581 |w (DE-600)2642093-4 |x 2150-5551 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:1 |g day:05 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40820-022-00869-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 1 |b 05 |c 07 |
author_variant |
f p fp y r yr d b db l c lc y d yd x z xz y s ys z s zs y l yl w l wl |
---|---|
matchkey_str |
article:21505551:2022----::arsoieetoantcoprtvntoknacdxnncanarglaemcoaebo |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40820-022-00869-7 doi (DE-627)SPR047504773 (SPR)s40820-022-00869-7-e DE-627 ger DE-627 rakwb eng Pan, Fei verfasserin aut Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. Electromagnetic wave absorption (dpeaa)DE-He213 Ti (dpeaa)DE-He213 CNT (dpeaa)DE-He213 MXene (dpeaa)DE-He213 Highly oriented Ni chains (dpeaa)DE-He213 Electromagnetic cooperation (dpeaa)DE-He213 Magnetic coupling (dpeaa)DE-He213 Rao, Yanping aut Batalu, Dan aut Cai, Lei aut Dong, Yanyan aut Zhu, Xiaojie aut Shi, Yuyang aut Shi, Zhong aut Liu, Yaowen aut Lu, Wei aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 14(2022), 1 vom: 05. Juli (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:14 year:2022 number:1 day:05 month:07 https://dx.doi.org/10.1007/s40820-022-00869-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 05 07 |
spelling |
10.1007/s40820-022-00869-7 doi (DE-627)SPR047504773 (SPR)s40820-022-00869-7-e DE-627 ger DE-627 rakwb eng Pan, Fei verfasserin aut Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. Electromagnetic wave absorption (dpeaa)DE-He213 Ti (dpeaa)DE-He213 CNT (dpeaa)DE-He213 MXene (dpeaa)DE-He213 Highly oriented Ni chains (dpeaa)DE-He213 Electromagnetic cooperation (dpeaa)DE-He213 Magnetic coupling (dpeaa)DE-He213 Rao, Yanping aut Batalu, Dan aut Cai, Lei aut Dong, Yanyan aut Zhu, Xiaojie aut Shi, Yuyang aut Shi, Zhong aut Liu, Yaowen aut Lu, Wei aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 14(2022), 1 vom: 05. Juli (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:14 year:2022 number:1 day:05 month:07 https://dx.doi.org/10.1007/s40820-022-00869-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 05 07 |
allfields_unstemmed |
10.1007/s40820-022-00869-7 doi (DE-627)SPR047504773 (SPR)s40820-022-00869-7-e DE-627 ger DE-627 rakwb eng Pan, Fei verfasserin aut Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. Electromagnetic wave absorption (dpeaa)DE-He213 Ti (dpeaa)DE-He213 CNT (dpeaa)DE-He213 MXene (dpeaa)DE-He213 Highly oriented Ni chains (dpeaa)DE-He213 Electromagnetic cooperation (dpeaa)DE-He213 Magnetic coupling (dpeaa)DE-He213 Rao, Yanping aut Batalu, Dan aut Cai, Lei aut Dong, Yanyan aut Zhu, Xiaojie aut Shi, Yuyang aut Shi, Zhong aut Liu, Yaowen aut Lu, Wei aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 14(2022), 1 vom: 05. Juli (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:14 year:2022 number:1 day:05 month:07 https://dx.doi.org/10.1007/s40820-022-00869-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 05 07 |
allfieldsGer |
10.1007/s40820-022-00869-7 doi (DE-627)SPR047504773 (SPR)s40820-022-00869-7-e DE-627 ger DE-627 rakwb eng Pan, Fei verfasserin aut Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. Electromagnetic wave absorption (dpeaa)DE-He213 Ti (dpeaa)DE-He213 CNT (dpeaa)DE-He213 MXene (dpeaa)DE-He213 Highly oriented Ni chains (dpeaa)DE-He213 Electromagnetic cooperation (dpeaa)DE-He213 Magnetic coupling (dpeaa)DE-He213 Rao, Yanping aut Batalu, Dan aut Cai, Lei aut Dong, Yanyan aut Zhu, Xiaojie aut Shi, Yuyang aut Shi, Zhong aut Liu, Yaowen aut Lu, Wei aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 14(2022), 1 vom: 05. Juli (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:14 year:2022 number:1 day:05 month:07 https://dx.doi.org/10.1007/s40820-022-00869-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 05 07 |
allfieldsSound |
10.1007/s40820-022-00869-7 doi (DE-627)SPR047504773 (SPR)s40820-022-00869-7-e DE-627 ger DE-627 rakwb eng Pan, Fei verfasserin aut Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. Electromagnetic wave absorption (dpeaa)DE-He213 Ti (dpeaa)DE-He213 CNT (dpeaa)DE-He213 MXene (dpeaa)DE-He213 Highly oriented Ni chains (dpeaa)DE-He213 Electromagnetic cooperation (dpeaa)DE-He213 Magnetic coupling (dpeaa)DE-He213 Rao, Yanping aut Batalu, Dan aut Cai, Lei aut Dong, Yanyan aut Zhu, Xiaojie aut Shi, Yuyang aut Shi, Zhong aut Liu, Yaowen aut Lu, Wei aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 14(2022), 1 vom: 05. Juli (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:14 year:2022 number:1 day:05 month:07 https://dx.doi.org/10.1007/s40820-022-00869-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1 05 07 |
language |
English |
source |
Enthalten in Nano-Micro letters 14(2022), 1 vom: 05. Juli volume:14 year:2022 number:1 day:05 month:07 |
sourceStr |
Enthalten in Nano-Micro letters 14(2022), 1 vom: 05. Juli volume:14 year:2022 number:1 day:05 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Electromagnetic wave absorption Ti CNT MXene Highly oriented Ni chains Electromagnetic cooperation Magnetic coupling |
isfreeaccess_bool |
true |
container_title |
Nano-Micro letters |
authorswithroles_txt_mv |
Pan, Fei @@aut@@ Rao, Yanping @@aut@@ Batalu, Dan @@aut@@ Cai, Lei @@aut@@ Dong, Yanyan @@aut@@ Zhu, Xiaojie @@aut@@ Shi, Yuyang @@aut@@ Shi, Zhong @@aut@@ Liu, Yaowen @@aut@@ Lu, Wei @@aut@@ |
publishDateDaySort_date |
2022-07-05T00:00:00Z |
hierarchy_top_id |
680319581 |
id |
SPR047504773 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047504773</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123528.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220706s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40820-022-00869-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047504773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40820-022-00869-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic wave absorption</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ti</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MXene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Highly oriented Ni chains</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic cooperation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Yanping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Batalu, Dan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Yanyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Xiaojie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Yuyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Zhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yaowen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano-Micro letters</subfield><subfield code="d">Berlin : Springer, 2009</subfield><subfield code="g">14(2022), 1 vom: 05. Juli</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">2150-5551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40820-022-00869-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Pan, Fei |
spellingShingle |
Pan, Fei misc Electromagnetic wave absorption misc Ti misc CNT misc MXene misc Highly oriented Ni chains misc Electromagnetic cooperation misc Magnetic coupling Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness |
authorStr |
Pan, Fei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)680319581 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2150-5551 |
topic_title |
Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness Electromagnetic wave absorption (dpeaa)DE-He213 Ti (dpeaa)DE-He213 CNT (dpeaa)DE-He213 MXene (dpeaa)DE-He213 Highly oriented Ni chains (dpeaa)DE-He213 Electromagnetic cooperation (dpeaa)DE-He213 Magnetic coupling (dpeaa)DE-He213 |
topic |
misc Electromagnetic wave absorption misc Ti misc CNT misc MXene misc Highly oriented Ni chains misc Electromagnetic cooperation misc Magnetic coupling |
topic_unstemmed |
misc Electromagnetic wave absorption misc Ti misc CNT misc MXene misc Highly oriented Ni chains misc Electromagnetic cooperation misc Magnetic coupling |
topic_browse |
misc Electromagnetic wave absorption misc Ti misc CNT misc MXene misc Highly oriented Ni chains misc Electromagnetic cooperation misc Magnetic coupling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nano-Micro letters |
hierarchy_parent_id |
680319581 |
hierarchy_top_title |
Nano-Micro letters |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)680319581 (DE-600)2642093-4 |
title |
Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness |
ctrlnum |
(DE-627)SPR047504773 (SPR)s40820-022-00869-7-e |
title_full |
Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness |
author_sort |
Pan, Fei |
journal |
Nano-Micro letters |
journalStr |
Nano-Micro letters |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Pan, Fei Rao, Yanping Batalu, Dan Cai, Lei Dong, Yanyan Zhu, Xiaojie Shi, Yuyang Shi, Zhong Liu, Yaowen Lu, Wei |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Pan, Fei |
doi_str_mv |
10.1007/s40820-022-00869-7 |
title_sort |
macroscopic electromagnetic cooperative network-enhanced mxene/ni chains aerogel-based microwave absorber with ultra-low matching thickness |
title_auth |
Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness |
abstract |
Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. © The Author(s) 2022 |
abstractGer |
Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. © The Author(s) 2022 |
abstract_unstemmed |
Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm. Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness |
url |
https://dx.doi.org/10.1007/s40820-022-00869-7 |
remote_bool |
true |
author2 |
Rao, Yanping Batalu, Dan Cai, Lei Dong, Yanyan Zhu, Xiaojie Shi, Yuyang Shi, Zhong Liu, Yaowen Lu, Wei |
author2Str |
Rao, Yanping Batalu, Dan Cai, Lei Dong, Yanyan Zhu, Xiaojie Shi, Yuyang Shi, Zhong Liu, Yaowen Lu, Wei |
ppnlink |
680319581 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40820-022-00869-7 |
up_date |
2024-07-04T03:20:52.263Z |
_version_ |
1803617044807024640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047504773</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123528.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220706s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40820-022-00869-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047504773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40820-022-00869-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pan, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic wave absorption</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ti</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MXene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Highly oriented Ni chains</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic cooperation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Yanping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Batalu, Dan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Yanyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Xiaojie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Yuyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Zhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yaowen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano-Micro letters</subfield><subfield code="d">Berlin : Springer, 2009</subfield><subfield code="g">14(2022), 1 vom: 05. Juli</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">2150-5551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40820-022-00869-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.401634 |