Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Amo...
Ausführliche Beschreibung
Autor*in: |
Kumar, Deepak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of fracture - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965, 235(2021), 1 vom: 21. Juli, Seite 61-78 |
---|---|
Übergeordnetes Werk: |
volume:235 ; year:2021 ; number:1 ; day:21 ; month:07 ; pages:61-78 |
Links: |
---|
DOI / URN: |
10.1007/s10704-021-00574-3 |
---|
Katalog-ID: |
SPR047507942 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047507942 | ||
003 | DE-627 | ||
005 | 20230826064716.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220707s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10704-021-00574-3 |2 doi | |
035 | |a (DE-627)SPR047507942 | ||
035 | |a (SPR)s10704-021-00574-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kumar, Deepak |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2021 | ||
520 | |a Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. | ||
650 | 4 | |a Additive manufacturing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Selective laser melting |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wire arc additive manufacturing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fracture toughness |7 (dpeaa)DE-He213 | |
650 | 4 | |a Three-point bending test |7 (dpeaa)DE-He213 | |
700 | 1 | |a Jhavar, Suyog |0 (orcid)0000-0003-4472-4839 |4 aut | |
700 | 1 | |a Arya, Abhinav |4 aut | |
700 | 1 | |a Prashanth, K. G. |4 aut | |
700 | 1 | |a Suwas, Satyam |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of fracture |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 |g 235(2021), 1 vom: 21. Juli, Seite 61-78 |w (DE-627)271175818 |w (DE-600)1478986-3 |x 1573-2673 |7 nnns |
773 | 1 | 8 | |g volume:235 |g year:2021 |g number:1 |g day:21 |g month:07 |g pages:61-78 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10704-021-00574-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 235 |j 2021 |e 1 |b 21 |c 07 |h 61-78 |
author_variant |
d k dk s j sj a a aa k g p kg kgp s s ss |
---|---|
matchkey_str |
article:15732673:2021----::ehnssotolnfatrtuhesfdiieyauatr |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10704-021-00574-3 doi (DE-627)SPR047507942 (SPR)s10704-021-00574-3-e DE-627 ger DE-627 rakwb eng Kumar, Deepak verfasserin aut Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. Additive manufacturing (dpeaa)DE-He213 Selective laser melting (dpeaa)DE-He213 Wire arc additive manufacturing (dpeaa)DE-He213 Fracture toughness (dpeaa)DE-He213 Three-point bending test (dpeaa)DE-He213 Jhavar, Suyog (orcid)0000-0003-4472-4839 aut Arya, Abhinav aut Prashanth, K. G. aut Suwas, Satyam aut Enthalten in International journal of fracture Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 235(2021), 1 vom: 21. Juli, Seite 61-78 (DE-627)271175818 (DE-600)1478986-3 1573-2673 nnns volume:235 year:2021 number:1 day:21 month:07 pages:61-78 https://dx.doi.org/10.1007/s10704-021-00574-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2144 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2021 1 21 07 61-78 |
spelling |
10.1007/s10704-021-00574-3 doi (DE-627)SPR047507942 (SPR)s10704-021-00574-3-e DE-627 ger DE-627 rakwb eng Kumar, Deepak verfasserin aut Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. Additive manufacturing (dpeaa)DE-He213 Selective laser melting (dpeaa)DE-He213 Wire arc additive manufacturing (dpeaa)DE-He213 Fracture toughness (dpeaa)DE-He213 Three-point bending test (dpeaa)DE-He213 Jhavar, Suyog (orcid)0000-0003-4472-4839 aut Arya, Abhinav aut Prashanth, K. G. aut Suwas, Satyam aut Enthalten in International journal of fracture Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 235(2021), 1 vom: 21. Juli, Seite 61-78 (DE-627)271175818 (DE-600)1478986-3 1573-2673 nnns volume:235 year:2021 number:1 day:21 month:07 pages:61-78 https://dx.doi.org/10.1007/s10704-021-00574-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2144 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2021 1 21 07 61-78 |
allfields_unstemmed |
10.1007/s10704-021-00574-3 doi (DE-627)SPR047507942 (SPR)s10704-021-00574-3-e DE-627 ger DE-627 rakwb eng Kumar, Deepak verfasserin aut Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. Additive manufacturing (dpeaa)DE-He213 Selective laser melting (dpeaa)DE-He213 Wire arc additive manufacturing (dpeaa)DE-He213 Fracture toughness (dpeaa)DE-He213 Three-point bending test (dpeaa)DE-He213 Jhavar, Suyog (orcid)0000-0003-4472-4839 aut Arya, Abhinav aut Prashanth, K. G. aut Suwas, Satyam aut Enthalten in International journal of fracture Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 235(2021), 1 vom: 21. Juli, Seite 61-78 (DE-627)271175818 (DE-600)1478986-3 1573-2673 nnns volume:235 year:2021 number:1 day:21 month:07 pages:61-78 https://dx.doi.org/10.1007/s10704-021-00574-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2144 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2021 1 21 07 61-78 |
allfieldsGer |
10.1007/s10704-021-00574-3 doi (DE-627)SPR047507942 (SPR)s10704-021-00574-3-e DE-627 ger DE-627 rakwb eng Kumar, Deepak verfasserin aut Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. Additive manufacturing (dpeaa)DE-He213 Selective laser melting (dpeaa)DE-He213 Wire arc additive manufacturing (dpeaa)DE-He213 Fracture toughness (dpeaa)DE-He213 Three-point bending test (dpeaa)DE-He213 Jhavar, Suyog (orcid)0000-0003-4472-4839 aut Arya, Abhinav aut Prashanth, K. G. aut Suwas, Satyam aut Enthalten in International journal of fracture Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 235(2021), 1 vom: 21. Juli, Seite 61-78 (DE-627)271175818 (DE-600)1478986-3 1573-2673 nnns volume:235 year:2021 number:1 day:21 month:07 pages:61-78 https://dx.doi.org/10.1007/s10704-021-00574-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2144 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2021 1 21 07 61-78 |
allfieldsSound |
10.1007/s10704-021-00574-3 doi (DE-627)SPR047507942 (SPR)s10704-021-00574-3-e DE-627 ger DE-627 rakwb eng Kumar, Deepak verfasserin aut Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. Additive manufacturing (dpeaa)DE-He213 Selective laser melting (dpeaa)DE-He213 Wire arc additive manufacturing (dpeaa)DE-He213 Fracture toughness (dpeaa)DE-He213 Three-point bending test (dpeaa)DE-He213 Jhavar, Suyog (orcid)0000-0003-4472-4839 aut Arya, Abhinav aut Prashanth, K. G. aut Suwas, Satyam aut Enthalten in International journal of fracture Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965 235(2021), 1 vom: 21. Juli, Seite 61-78 (DE-627)271175818 (DE-600)1478986-3 1573-2673 nnns volume:235 year:2021 number:1 day:21 month:07 pages:61-78 https://dx.doi.org/10.1007/s10704-021-00574-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2144 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2021 1 21 07 61-78 |
language |
English |
source |
Enthalten in International journal of fracture 235(2021), 1 vom: 21. Juli, Seite 61-78 volume:235 year:2021 number:1 day:21 month:07 pages:61-78 |
sourceStr |
Enthalten in International journal of fracture 235(2021), 1 vom: 21. Juli, Seite 61-78 volume:235 year:2021 number:1 day:21 month:07 pages:61-78 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Additive manufacturing Selective laser melting Wire arc additive manufacturing Fracture toughness Three-point bending test |
isfreeaccess_bool |
false |
container_title |
International journal of fracture |
authorswithroles_txt_mv |
Kumar, Deepak @@aut@@ Jhavar, Suyog @@aut@@ Arya, Abhinav @@aut@@ Prashanth, K. G. @@aut@@ Suwas, Satyam @@aut@@ |
publishDateDaySort_date |
2021-07-21T00:00:00Z |
hierarchy_top_id |
271175818 |
id |
SPR047507942 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047507942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230826064716.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220707s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10704-021-00574-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047507942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10704-021-00574-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumar, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive manufacturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective laser melting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wire arc additive manufacturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture toughness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-point bending test</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jhavar, Suyog</subfield><subfield code="0">(orcid)0000-0003-4472-4839</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arya, Abhinav</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prashanth, K. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suwas, Satyam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of fracture</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965</subfield><subfield code="g">235(2021), 1 vom: 21. Juli, Seite 61-78</subfield><subfield code="w">(DE-627)271175818</subfield><subfield code="w">(DE-600)1478986-3</subfield><subfield code="x">1573-2673</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:235</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:61-78</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10704-021-00574-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">235</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">07</subfield><subfield code="h">61-78</subfield></datafield></record></collection>
|
author |
Kumar, Deepak |
spellingShingle |
Kumar, Deepak misc Additive manufacturing misc Selective laser melting misc Wire arc additive manufacturing misc Fracture toughness misc Three-point bending test Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L |
authorStr |
Kumar, Deepak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271175818 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-2673 |
topic_title |
Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L Additive manufacturing (dpeaa)DE-He213 Selective laser melting (dpeaa)DE-He213 Wire arc additive manufacturing (dpeaa)DE-He213 Fracture toughness (dpeaa)DE-He213 Three-point bending test (dpeaa)DE-He213 |
topic |
misc Additive manufacturing misc Selective laser melting misc Wire arc additive manufacturing misc Fracture toughness misc Three-point bending test |
topic_unstemmed |
misc Additive manufacturing misc Selective laser melting misc Wire arc additive manufacturing misc Fracture toughness misc Three-point bending test |
topic_browse |
misc Additive manufacturing misc Selective laser melting misc Wire arc additive manufacturing misc Fracture toughness misc Three-point bending test |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of fracture |
hierarchy_parent_id |
271175818 |
hierarchy_top_title |
International journal of fracture |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271175818 (DE-600)1478986-3 |
title |
Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L |
ctrlnum |
(DE-627)SPR047507942 (SPR)s10704-021-00574-3-e |
title_full |
Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L |
author_sort |
Kumar, Deepak |
journal |
International journal of fracture |
journalStr |
International journal of fracture |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
61 |
author_browse |
Kumar, Deepak Jhavar, Suyog Arya, Abhinav Prashanth, K. G. Suwas, Satyam |
container_volume |
235 |
format_se |
Elektronische Aufsätze |
author-letter |
Kumar, Deepak |
doi_str_mv |
10.1007/s10704-021-00574-3 |
normlink |
(ORCID)0000-0003-4472-4839 |
normlink_prefix_str_mv |
(orcid)0000-0003-4472-4839 |
title_sort |
mechanisms controlling fracture toughness of additively manufactured stainless steel 316l |
title_auth |
Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L |
abstract |
Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstractGer |
Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstract_unstemmed |
Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2144 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L |
url |
https://dx.doi.org/10.1007/s10704-021-00574-3 |
remote_bool |
true |
author2 |
Jhavar, Suyog Arya, Abhinav Prashanth, K. G. Suwas, Satyam |
author2Str |
Jhavar, Suyog Arya, Abhinav Prashanth, K. G. Suwas, Satyam |
ppnlink |
271175818 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10704-021-00574-3 |
up_date |
2024-07-04T03:21:31.819Z |
_version_ |
1803617086278205440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047507942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230826064716.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220707s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10704-021-00574-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047507942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10704-021-00574-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumar, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Additive manufacturing (AM) has emerged as an alternative tool to overcome the challenges in conventionally processed metallic components. It is gaining wide acceptability because of the superior properties of the manufactured components compared to their wrought processed counterparts. Among the available AM processed materials, austenitic stainless steel 316L is widely explored wherein an excellent strength-ductility trade-off has been reported. However, the mechanisms underlying fracture toughness of AM stainless steel 316L vis-à-vis wrought processed stainless steel 316L material are not yet explored. The present investigation is aimed at examining the mechanisms accountable for the fracture toughness of AM processed stainless steel 316L. The specimens are produced by two different AM techniques namely, selective laser melting (SLM) and wire arc additive manufacturing (WAAM). A wrought processed stainless steel 316L was used as a control material for comparison. Three-point bending tests were carried out on fatigue pre-cracked single edge notched specimens and crack initiation fracture toughness was evaluated. Digital image correlation was used for strain analysis and to monitor crack propagation. The SLM manufactured sample has shown higher fracture toughness whereas WAAM has exhibited nearly the same fracture toughness when compared to the wrought processed stainless steel 316L sample. Microstructure of fractured samples consists of a significantly higher twin density and a higher propensity of dislocation slip was observed in the SLM sample than the other two. It has been argued that a very fine cellular structure, minimized process-induced defects, enhanced twin density led to promising toughness in the SLM processed stainless steel 316L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive manufacturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective laser melting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wire arc additive manufacturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture toughness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-point bending test</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jhavar, Suyog</subfield><subfield code="0">(orcid)0000-0003-4472-4839</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arya, Abhinav</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prashanth, K. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suwas, Satyam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of fracture</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1965</subfield><subfield code="g">235(2021), 1 vom: 21. Juli, Seite 61-78</subfield><subfield code="w">(DE-627)271175818</subfield><subfield code="w">(DE-600)1478986-3</subfield><subfield code="x">1573-2673</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:235</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:61-78</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10704-021-00574-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">235</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">07</subfield><subfield code="h">61-78</subfield></datafield></record></collection>
|
score |
7.401613 |