Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications
Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, valu...
Ausführliche Beschreibung
Autor*in: |
Chehlabi, M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 26(2022), 15 vom: 11. Juni, Seite 7081-7105 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2022 ; number:15 ; day:11 ; month:06 ; pages:7081-7105 |
Links: |
---|
DOI / URN: |
10.1007/s00500-022-07172-y |
---|
Katalog-ID: |
SPR047538066 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047538066 | ||
003 | DE-627 | ||
005 | 20230507225819.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220710s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-022-07172-y |2 doi | |
035 | |a (DE-627)SPR047538066 | ||
035 | |a (SPR)s00500-022-07172-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Chehlabi, M. |e verfasserin |0 (orcid)0000-0003-4719-2874 |4 aut | |
245 | 1 | 0 | |a Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. | ||
650 | 4 | |a Fuzzy numbers |7 (dpeaa)DE-He213 | |
650 | 4 | |a Trapezoidal approximation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Approximation operators |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 26(2022), 15 vom: 11. Juni, Seite 7081-7105 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2022 |g number:15 |g day:11 |g month:06 |g pages:7081-7105 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-022-07172-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 26 |j 2022 |e 15 |b 11 |c 06 |h 7081-7105 |
author_variant |
m c mc |
---|---|
matchkey_str |
chehlabim:2022----:rpziaapoiainprtrpeevnteotniaosfuznmes |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00500-022-07172-y doi (DE-627)SPR047538066 (SPR)s00500-022-07172-y-e DE-627 ger DE-627 rakwb eng Chehlabi, M. verfasserin (orcid)0000-0003-4719-2874 aut Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. Fuzzy numbers (dpeaa)DE-He213 Trapezoidal approximation (dpeaa)DE-He213 Approximation operators (dpeaa)DE-He213 Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 15 vom: 11. Juni, Seite 7081-7105 (DE-627)SPR006469531 nnns volume:26 year:2022 number:15 day:11 month:06 pages:7081-7105 https://dx.doi.org/10.1007/s00500-022-07172-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 15 11 06 7081-7105 |
spelling |
10.1007/s00500-022-07172-y doi (DE-627)SPR047538066 (SPR)s00500-022-07172-y-e DE-627 ger DE-627 rakwb eng Chehlabi, M. verfasserin (orcid)0000-0003-4719-2874 aut Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. Fuzzy numbers (dpeaa)DE-He213 Trapezoidal approximation (dpeaa)DE-He213 Approximation operators (dpeaa)DE-He213 Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 15 vom: 11. Juni, Seite 7081-7105 (DE-627)SPR006469531 nnns volume:26 year:2022 number:15 day:11 month:06 pages:7081-7105 https://dx.doi.org/10.1007/s00500-022-07172-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 15 11 06 7081-7105 |
allfields_unstemmed |
10.1007/s00500-022-07172-y doi (DE-627)SPR047538066 (SPR)s00500-022-07172-y-e DE-627 ger DE-627 rakwb eng Chehlabi, M. verfasserin (orcid)0000-0003-4719-2874 aut Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. Fuzzy numbers (dpeaa)DE-He213 Trapezoidal approximation (dpeaa)DE-He213 Approximation operators (dpeaa)DE-He213 Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 15 vom: 11. Juni, Seite 7081-7105 (DE-627)SPR006469531 nnns volume:26 year:2022 number:15 day:11 month:06 pages:7081-7105 https://dx.doi.org/10.1007/s00500-022-07172-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 15 11 06 7081-7105 |
allfieldsGer |
10.1007/s00500-022-07172-y doi (DE-627)SPR047538066 (SPR)s00500-022-07172-y-e DE-627 ger DE-627 rakwb eng Chehlabi, M. verfasserin (orcid)0000-0003-4719-2874 aut Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. Fuzzy numbers (dpeaa)DE-He213 Trapezoidal approximation (dpeaa)DE-He213 Approximation operators (dpeaa)DE-He213 Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 15 vom: 11. Juni, Seite 7081-7105 (DE-627)SPR006469531 nnns volume:26 year:2022 number:15 day:11 month:06 pages:7081-7105 https://dx.doi.org/10.1007/s00500-022-07172-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 15 11 06 7081-7105 |
allfieldsSound |
10.1007/s00500-022-07172-y doi (DE-627)SPR047538066 (SPR)s00500-022-07172-y-e DE-627 ger DE-627 rakwb eng Chehlabi, M. verfasserin (orcid)0000-0003-4719-2874 aut Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. Fuzzy numbers (dpeaa)DE-He213 Trapezoidal approximation (dpeaa)DE-He213 Approximation operators (dpeaa)DE-He213 Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 15 vom: 11. Juni, Seite 7081-7105 (DE-627)SPR006469531 nnns volume:26 year:2022 number:15 day:11 month:06 pages:7081-7105 https://dx.doi.org/10.1007/s00500-022-07172-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 15 11 06 7081-7105 |
language |
English |
source |
Enthalten in Soft Computing 26(2022), 15 vom: 11. Juni, Seite 7081-7105 volume:26 year:2022 number:15 day:11 month:06 pages:7081-7105 |
sourceStr |
Enthalten in Soft Computing 26(2022), 15 vom: 11. Juni, Seite 7081-7105 volume:26 year:2022 number:15 day:11 month:06 pages:7081-7105 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fuzzy numbers Trapezoidal approximation Approximation operators |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Chehlabi, M. @@aut@@ |
publishDateDaySort_date |
2022-06-11T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR047538066 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047538066</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507225819.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220710s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-022-07172-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047538066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-022-07172-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chehlabi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4719-2874</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy numbers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trapezoidal approximation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation operators</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">26(2022), 15 vom: 11. Juni, Seite 7081-7105</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:15</subfield><subfield code="g">day:11</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:7081-7105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-022-07172-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">15</subfield><subfield code="b">11</subfield><subfield code="c">06</subfield><subfield code="h">7081-7105</subfield></datafield></record></collection>
|
author |
Chehlabi, M. |
spellingShingle |
Chehlabi, M. misc Fuzzy numbers misc Trapezoidal approximation misc Approximation operators Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications |
authorStr |
Chehlabi, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications Fuzzy numbers (dpeaa)DE-He213 Trapezoidal approximation (dpeaa)DE-He213 Approximation operators (dpeaa)DE-He213 |
topic |
misc Fuzzy numbers misc Trapezoidal approximation misc Approximation operators |
topic_unstemmed |
misc Fuzzy numbers misc Trapezoidal approximation misc Approximation operators |
topic_browse |
misc Fuzzy numbers misc Trapezoidal approximation misc Approximation operators |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications |
ctrlnum |
(DE-627)SPR047538066 (SPR)s00500-022-07172-y-e |
title_full |
Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications |
author_sort |
Chehlabi, M. |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
7081 |
author_browse |
Chehlabi, M. |
container_volume |
26 |
format_se |
Elektronische Aufsätze |
author-letter |
Chehlabi, M. |
doi_str_mv |
10.1007/s00500-022-07172-y |
normlink |
(ORCID)0000-0003-4719-2874 |
normlink_prefix_str_mv |
(orcid)0000-0003-4719-2874 |
title_sort |
trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications |
title_auth |
Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications |
abstract |
Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
15 |
title_short |
Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications |
url |
https://dx.doi.org/10.1007/s00500-022-07172-y |
remote_bool |
true |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-022-07172-y |
up_date |
2024-07-03T13:23:14.714Z |
_version_ |
1803564345947324416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047538066</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507225819.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220710s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-022-07172-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047538066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-022-07172-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chehlabi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4719-2874</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers, relationships between them and their applications. Initial results lead to achieve three main trapezoidal approximation operators that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval, and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and comparative examples are given as practical applications of the obtained results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy numbers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trapezoidal approximation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation operators</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">26(2022), 15 vom: 11. Juni, Seite 7081-7105</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:15</subfield><subfield code="g">day:11</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:7081-7105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-022-07172-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">15</subfield><subfield code="b">11</subfield><subfield code="c">06</subfield><subfield code="h">7081-7105</subfield></datafield></record></collection>
|
score |
7.40211 |