Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata
Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative i...
Ausführliche Beschreibung
Autor*in: |
Dutta, Debashree [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of data, information and management - [Cham] : Springer Nature Switzerland AG, 2019, 4(2022), 2 vom: Juni, Seite 167-183 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2022 ; number:2 ; month:06 ; pages:167-183 |
Links: |
---|
DOI / URN: |
10.1007/s42488-022-00071-9 |
---|
Katalog-ID: |
SPR047639903 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047639903 | ||
003 | DE-627 | ||
005 | 20230507234931.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220720s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42488-022-00071-9 |2 doi | |
035 | |a (DE-627)SPR047639903 | ||
035 | |a (SPR)s42488-022-00071-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Dutta, Debashree |e verfasserin |0 (orcid)0000-0001-9622-1518 |4 aut | |
245 | 1 | 0 | |a Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 | ||
520 | |a Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. | ||
650 | 4 | |a Thunderstorm |7 (dpeaa)DE-He213 | |
650 | 4 | |a SHapley Additive exPlanations (SHAP) |7 (dpeaa)DE-He213 | |
650 | 4 | |a XGBoost |7 (dpeaa)DE-He213 | |
650 | 4 | |a Logistic Regression |7 (dpeaa)DE-He213 | |
650 | 4 | |a CAPE |7 (dpeaa)DE-He213 | |
700 | 1 | |a Pal, Sankar K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of data, information and management |d [Cham] : Springer Nature Switzerland AG, 2019 |g 4(2022), 2 vom: Juni, Seite 167-183 |w (DE-627)1038161215 |w (DE-600)2947482-6 |x 2524-6364 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2022 |g number:2 |g month:06 |g pages:167-183 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42488-022-00071-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2022 |e 2 |c 06 |h 167-183 |
author_variant |
d d dd s k p sk skp |
---|---|
matchkey_str |
article:25246364:2022----::nepeainflcbxosotemrdcinopeosocmlnm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s42488-022-00071-9 doi (DE-627)SPR047639903 (SPR)s42488-022-00071-9-e DE-627 ger DE-627 rakwb eng Dutta, Debashree verfasserin (orcid)0000-0001-9622-1518 aut Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. Thunderstorm (dpeaa)DE-He213 SHapley Additive exPlanations (SHAP) (dpeaa)DE-He213 XGBoost (dpeaa)DE-He213 Logistic Regression (dpeaa)DE-He213 CAPE (dpeaa)DE-He213 Pal, Sankar K. aut Enthalten in Journal of data, information and management [Cham] : Springer Nature Switzerland AG, 2019 4(2022), 2 vom: Juni, Seite 167-183 (DE-627)1038161215 (DE-600)2947482-6 2524-6364 nnns volume:4 year:2022 number:2 month:06 pages:167-183 https://dx.doi.org/10.1007/s42488-022-00071-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 4 2022 2 06 167-183 |
spelling |
10.1007/s42488-022-00071-9 doi (DE-627)SPR047639903 (SPR)s42488-022-00071-9-e DE-627 ger DE-627 rakwb eng Dutta, Debashree verfasserin (orcid)0000-0001-9622-1518 aut Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. Thunderstorm (dpeaa)DE-He213 SHapley Additive exPlanations (SHAP) (dpeaa)DE-He213 XGBoost (dpeaa)DE-He213 Logistic Regression (dpeaa)DE-He213 CAPE (dpeaa)DE-He213 Pal, Sankar K. aut Enthalten in Journal of data, information and management [Cham] : Springer Nature Switzerland AG, 2019 4(2022), 2 vom: Juni, Seite 167-183 (DE-627)1038161215 (DE-600)2947482-6 2524-6364 nnns volume:4 year:2022 number:2 month:06 pages:167-183 https://dx.doi.org/10.1007/s42488-022-00071-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 4 2022 2 06 167-183 |
allfields_unstemmed |
10.1007/s42488-022-00071-9 doi (DE-627)SPR047639903 (SPR)s42488-022-00071-9-e DE-627 ger DE-627 rakwb eng Dutta, Debashree verfasserin (orcid)0000-0001-9622-1518 aut Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. Thunderstorm (dpeaa)DE-He213 SHapley Additive exPlanations (SHAP) (dpeaa)DE-He213 XGBoost (dpeaa)DE-He213 Logistic Regression (dpeaa)DE-He213 CAPE (dpeaa)DE-He213 Pal, Sankar K. aut Enthalten in Journal of data, information and management [Cham] : Springer Nature Switzerland AG, 2019 4(2022), 2 vom: Juni, Seite 167-183 (DE-627)1038161215 (DE-600)2947482-6 2524-6364 nnns volume:4 year:2022 number:2 month:06 pages:167-183 https://dx.doi.org/10.1007/s42488-022-00071-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 4 2022 2 06 167-183 |
allfieldsGer |
10.1007/s42488-022-00071-9 doi (DE-627)SPR047639903 (SPR)s42488-022-00071-9-e DE-627 ger DE-627 rakwb eng Dutta, Debashree verfasserin (orcid)0000-0001-9622-1518 aut Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. Thunderstorm (dpeaa)DE-He213 SHapley Additive exPlanations (SHAP) (dpeaa)DE-He213 XGBoost (dpeaa)DE-He213 Logistic Regression (dpeaa)DE-He213 CAPE (dpeaa)DE-He213 Pal, Sankar K. aut Enthalten in Journal of data, information and management [Cham] : Springer Nature Switzerland AG, 2019 4(2022), 2 vom: Juni, Seite 167-183 (DE-627)1038161215 (DE-600)2947482-6 2524-6364 nnns volume:4 year:2022 number:2 month:06 pages:167-183 https://dx.doi.org/10.1007/s42488-022-00071-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 4 2022 2 06 167-183 |
allfieldsSound |
10.1007/s42488-022-00071-9 doi (DE-627)SPR047639903 (SPR)s42488-022-00071-9-e DE-627 ger DE-627 rakwb eng Dutta, Debashree verfasserin (orcid)0000-0001-9622-1518 aut Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. Thunderstorm (dpeaa)DE-He213 SHapley Additive exPlanations (SHAP) (dpeaa)DE-He213 XGBoost (dpeaa)DE-He213 Logistic Regression (dpeaa)DE-He213 CAPE (dpeaa)DE-He213 Pal, Sankar K. aut Enthalten in Journal of data, information and management [Cham] : Springer Nature Switzerland AG, 2019 4(2022), 2 vom: Juni, Seite 167-183 (DE-627)1038161215 (DE-600)2947482-6 2524-6364 nnns volume:4 year:2022 number:2 month:06 pages:167-183 https://dx.doi.org/10.1007/s42488-022-00071-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 4 2022 2 06 167-183 |
language |
English |
source |
Enthalten in Journal of data, information and management 4(2022), 2 vom: Juni, Seite 167-183 volume:4 year:2022 number:2 month:06 pages:167-183 |
sourceStr |
Enthalten in Journal of data, information and management 4(2022), 2 vom: Juni, Seite 167-183 volume:4 year:2022 number:2 month:06 pages:167-183 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thunderstorm SHapley Additive exPlanations (SHAP) XGBoost Logistic Regression CAPE |
isfreeaccess_bool |
false |
container_title |
Journal of data, information and management |
authorswithroles_txt_mv |
Dutta, Debashree @@aut@@ Pal, Sankar K. @@aut@@ |
publishDateDaySort_date |
2022-06-01T00:00:00Z |
hierarchy_top_id |
1038161215 |
id |
SPR047639903 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047639903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507234931.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220720s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42488-022-00071-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047639903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42488-022-00071-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutta, Debashree</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9622-1518</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thunderstorm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SHapley Additive exPlanations (SHAP)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XGBoost</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logistic Regression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CAPE</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Sankar K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of data, information and management</subfield><subfield code="d">[Cham] : Springer Nature Switzerland AG, 2019</subfield><subfield code="g">4(2022), 2 vom: Juni, Seite 167-183</subfield><subfield code="w">(DE-627)1038161215</subfield><subfield code="w">(DE-600)2947482-6</subfield><subfield code="x">2524-6364</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:167-183</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42488-022-00071-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">167-183</subfield></datafield></record></collection>
|
author |
Dutta, Debashree |
spellingShingle |
Dutta, Debashree misc Thunderstorm misc SHapley Additive exPlanations (SHAP) misc XGBoost misc Logistic Regression misc CAPE Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata |
authorStr |
Dutta, Debashree |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1038161215 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2524-6364 |
topic_title |
Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata Thunderstorm (dpeaa)DE-He213 SHapley Additive exPlanations (SHAP) (dpeaa)DE-He213 XGBoost (dpeaa)DE-He213 Logistic Regression (dpeaa)DE-He213 CAPE (dpeaa)DE-He213 |
topic |
misc Thunderstorm misc SHapley Additive exPlanations (SHAP) misc XGBoost misc Logistic Regression misc CAPE |
topic_unstemmed |
misc Thunderstorm misc SHapley Additive exPlanations (SHAP) misc XGBoost misc Logistic Regression misc CAPE |
topic_browse |
misc Thunderstorm misc SHapley Additive exPlanations (SHAP) misc XGBoost misc Logistic Regression misc CAPE |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of data, information and management |
hierarchy_parent_id |
1038161215 |
hierarchy_top_title |
Journal of data, information and management |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)1038161215 (DE-600)2947482-6 |
title |
Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata |
ctrlnum |
(DE-627)SPR047639903 (SPR)s42488-022-00071-9-e |
title_full |
Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata |
author_sort |
Dutta, Debashree |
journal |
Journal of data, information and management |
journalStr |
Journal of data, information and management |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
167 |
author_browse |
Dutta, Debashree Pal, Sankar K. |
container_volume |
4 |
format_se |
Elektronische Aufsätze |
author-letter |
Dutta, Debashree |
doi_str_mv |
10.1007/s42488-022-00071-9 |
normlink |
(ORCID)0000-0001-9622-1518 |
normlink_prefix_str_mv |
(orcid)0000-0001-9622-1518 |
title_sort |
interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over kolkata |
title_auth |
Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata |
abstract |
Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
abstractGer |
Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
abstract_unstemmed |
Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata |
url |
https://dx.doi.org/10.1007/s42488-022-00071-9 |
remote_bool |
true |
author2 |
Pal, Sankar K. |
author2Str |
Pal, Sankar K. |
ppnlink |
1038161215 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42488-022-00071-9 |
up_date |
2024-07-03T14:02:18.559Z |
_version_ |
1803566803650084864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047639903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507234931.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220720s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42488-022-00071-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047639903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42488-022-00071-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutta, Debashree</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9622-1518</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpretation of black box for short-term predictions of pre-monsoon cumulonimbus cloud events over Kolkata</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Thunderstorms are meso-scale systems that are characterised by deep convective cumulonimbus (Cb) clouds associated with torrential rain, lightning, hail, dust storms, strong winds, downbursts, and tornadoes. As Gangetic West Bengal is prone to thunderstorm, early forecasting is imperative in order to protect life and property, and prevent the damage caused by these intense storms. The present study comprises two issues on model evaluation and interpretability by applying popular machine learning algorithms, viz., Extreme Gradient Boosting (XGBoost) and Logistic Regression (LR) with potentially predictive thermodynamic indices and parameters for short-term predictions of pre-monsoon thunderstorms over Kolkata. The thermodynamic indices and parameters employed include convective available potential energy (CAPE), convective inhibition (CIN), Bulk Richardson number (BRN), K-Index (KI), lifted index (LI), total totals Index (TT), Showalter index (SI),temperature (TEMP), relative humidity (RELH), dew point temperature (DWPT), wind direction (DRCT), wind Speed (SKNT), mixing ratio (MIXR), severe weather threat index (SWI), potential temperature (THTA), equivalent potential temperature (THTE), and virtual potential temperature (THTV). In the proposed approach, we place a greater emphasis on the concept of Explainable artificial intelligence (XAI) to apply SHapley Additive exPlanations (SHAP), a Shapley-value-based explanation method based on the coalitional game theory. The SHAP approach, as a primary interface, enables the identification and prioritization of features that determine the occurrences of pre-monsoon thunderstorms and compares the two different machine learning algorithms. SHAP can quantify the contribution of predictor variables to each data point and rank the importance of predictor variables in terms of their contributions to the model output. It also facilitates the computation of different plots on both global and local levels. Accordingly, it can help determine the validity of the model based on domain expertise by identifying the most important variables. The results indicate that both XGBoost and LR support the dominant positive influence of the convective available potential energy (CAPE), while the ranks and interpretations of the other predictor variables differ. Although, these two models perform well in predicting the pre-monsoon thunderstorms, they may favour different predictor variables due to their varying natures, thereby resulting in different explainability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thunderstorm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SHapley Additive exPlanations (SHAP)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XGBoost</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logistic Regression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CAPE</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Sankar K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of data, information and management</subfield><subfield code="d">[Cham] : Springer Nature Switzerland AG, 2019</subfield><subfield code="g">4(2022), 2 vom: Juni, Seite 167-183</subfield><subfield code="w">(DE-627)1038161215</subfield><subfield code="w">(DE-600)2947482-6</subfield><subfield code="x">2524-6364</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:167-183</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42488-022-00071-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">167-183</subfield></datafield></record></collection>
|
score |
7.4019136 |