Uncertainty optimization based feature subset selection model using rough set and uncertainty theory

Abstract The rough set is a tool for the assessment of uncertainty, and the rough set reducts formation is the technique to remove uncertainty in the feature set for feature subset selection. This work uses uncertainty theory from the rough set perspective to find uncertainty optimization-based redu...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Sinha, Arvind Kumar [verfasserIn]

Shende, Pradeep

Namdev, Nishant

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Uncertainty optimization

Rough set

Uncertainty theory

reducts

Uncertain measure

Anmerkung:

© The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2022

Übergeordnetes Werk:

Enthalten in: International journal of information technology - [Singapore] : Springer Singapore, 2017, 14(2022), 5 vom: 13. Juni, Seite 2723-2739

Übergeordnetes Werk:

volume:14 ; year:2022 ; number:5 ; day:13 ; month:06 ; pages:2723-2739

Links:

Volltext

DOI / URN:

10.1007/s41870-022-00994-x

Katalog-ID:

SPR047709898

Nicht das Richtige dabei?

Schreiben Sie uns!