A note on exponential Riesz bases
Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \s...
Ausführliche Beschreibung
Autor*in: |
Caragea, Andrei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Sampling theory, signal processing, and data analysis - [Cham] : Birkhäuser, 2021, 20(2022), 2 vom: 28. Juli |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2022 ; number:2 ; day:28 ; month:07 |
Links: |
---|
DOI / URN: |
10.1007/s43670-022-00031-9 |
---|
Katalog-ID: |
SPR047710616 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047710616 | ||
003 | DE-627 | ||
005 | 20230509121945.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220729s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s43670-022-00031-9 |2 doi | |
035 | |a (DE-627)SPR047710616 | ||
035 | |a (SPR)s43670-022-00031-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Caragea, Andrei |e verfasserin |4 aut | |
245 | 1 | 2 | |a A note on exponential Riesz bases |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. | ||
650 | 4 | |a Exponential bases |7 (dpeaa)DE-He213 | |
650 | 4 | |a Riesz bases |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hierarchical structure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Finite union of intervals |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kronecker–Weyl equidistribution along the primes |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lee, Dae Gwan |0 (orcid)0000-0002-0991-738X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Sampling theory, signal processing, and data analysis |d [Cham] : Birkhäuser, 2021 |g 20(2022), 2 vom: 28. Juli |w (DE-627)1735681601 |w (DE-600)3041928-1 |x 2730-5724 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2022 |g number:2 |g day:28 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s43670-022-00031-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2022 |e 2 |b 28 |c 07 |
author_variant |
a c ac d g l dg dgl |
---|---|
matchkey_str |
article:27305724:2022----::ntoepnnili |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s43670-022-00031-9 doi (DE-627)SPR047710616 (SPR)s43670-022-00031-9-e DE-627 ger DE-627 rakwb eng Caragea, Andrei verfasserin aut A note on exponential Riesz bases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. Exponential bases (dpeaa)DE-He213 Riesz bases (dpeaa)DE-He213 Hierarchical structure (dpeaa)DE-He213 Finite union of intervals (dpeaa)DE-He213 Kronecker–Weyl equidistribution along the primes (dpeaa)DE-He213 Lee, Dae Gwan (orcid)0000-0002-0991-738X aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 20(2022), 2 vom: 28. Juli (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:20 year:2022 number:2 day:28 month:07 https://dx.doi.org/10.1007/s43670-022-00031-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 2 28 07 |
spelling |
10.1007/s43670-022-00031-9 doi (DE-627)SPR047710616 (SPR)s43670-022-00031-9-e DE-627 ger DE-627 rakwb eng Caragea, Andrei verfasserin aut A note on exponential Riesz bases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. Exponential bases (dpeaa)DE-He213 Riesz bases (dpeaa)DE-He213 Hierarchical structure (dpeaa)DE-He213 Finite union of intervals (dpeaa)DE-He213 Kronecker–Weyl equidistribution along the primes (dpeaa)DE-He213 Lee, Dae Gwan (orcid)0000-0002-0991-738X aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 20(2022), 2 vom: 28. Juli (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:20 year:2022 number:2 day:28 month:07 https://dx.doi.org/10.1007/s43670-022-00031-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 2 28 07 |
allfields_unstemmed |
10.1007/s43670-022-00031-9 doi (DE-627)SPR047710616 (SPR)s43670-022-00031-9-e DE-627 ger DE-627 rakwb eng Caragea, Andrei verfasserin aut A note on exponential Riesz bases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. Exponential bases (dpeaa)DE-He213 Riesz bases (dpeaa)DE-He213 Hierarchical structure (dpeaa)DE-He213 Finite union of intervals (dpeaa)DE-He213 Kronecker–Weyl equidistribution along the primes (dpeaa)DE-He213 Lee, Dae Gwan (orcid)0000-0002-0991-738X aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 20(2022), 2 vom: 28. Juli (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:20 year:2022 number:2 day:28 month:07 https://dx.doi.org/10.1007/s43670-022-00031-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 2 28 07 |
allfieldsGer |
10.1007/s43670-022-00031-9 doi (DE-627)SPR047710616 (SPR)s43670-022-00031-9-e DE-627 ger DE-627 rakwb eng Caragea, Andrei verfasserin aut A note on exponential Riesz bases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. Exponential bases (dpeaa)DE-He213 Riesz bases (dpeaa)DE-He213 Hierarchical structure (dpeaa)DE-He213 Finite union of intervals (dpeaa)DE-He213 Kronecker–Weyl equidistribution along the primes (dpeaa)DE-He213 Lee, Dae Gwan (orcid)0000-0002-0991-738X aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 20(2022), 2 vom: 28. Juli (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:20 year:2022 number:2 day:28 month:07 https://dx.doi.org/10.1007/s43670-022-00031-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 2 28 07 |
allfieldsSound |
10.1007/s43670-022-00031-9 doi (DE-627)SPR047710616 (SPR)s43670-022-00031-9-e DE-627 ger DE-627 rakwb eng Caragea, Andrei verfasserin aut A note on exponential Riesz bases 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. Exponential bases (dpeaa)DE-He213 Riesz bases (dpeaa)DE-He213 Hierarchical structure (dpeaa)DE-He213 Finite union of intervals (dpeaa)DE-He213 Kronecker–Weyl equidistribution along the primes (dpeaa)DE-He213 Lee, Dae Gwan (orcid)0000-0002-0991-738X aut Enthalten in Sampling theory, signal processing, and data analysis [Cham] : Birkhäuser, 2021 20(2022), 2 vom: 28. Juli (DE-627)1735681601 (DE-600)3041928-1 2730-5724 nnns volume:20 year:2022 number:2 day:28 month:07 https://dx.doi.org/10.1007/s43670-022-00031-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 20 2022 2 28 07 |
language |
English |
source |
Enthalten in Sampling theory, signal processing, and data analysis 20(2022), 2 vom: 28. Juli volume:20 year:2022 number:2 day:28 month:07 |
sourceStr |
Enthalten in Sampling theory, signal processing, and data analysis 20(2022), 2 vom: 28. Juli volume:20 year:2022 number:2 day:28 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Exponential bases Riesz bases Hierarchical structure Finite union of intervals Kronecker–Weyl equidistribution along the primes |
isfreeaccess_bool |
true |
container_title |
Sampling theory, signal processing, and data analysis |
authorswithroles_txt_mv |
Caragea, Andrei @@aut@@ Lee, Dae Gwan @@aut@@ |
publishDateDaySort_date |
2022-07-28T00:00:00Z |
hierarchy_top_id |
1735681601 |
id |
SPR047710616 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047710616</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509121945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220729s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43670-022-00031-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047710616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43670-022-00031-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Caragea, Andrei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A note on exponential Riesz bases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential bases</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz bases</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite union of intervals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kronecker–Weyl equidistribution along the primes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Dae Gwan</subfield><subfield code="0">(orcid)0000-0002-0991-738X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sampling theory, signal processing, and data analysis</subfield><subfield code="d">[Cham] : Birkhäuser, 2021</subfield><subfield code="g">20(2022), 2 vom: 28. Juli</subfield><subfield code="w">(DE-627)1735681601</subfield><subfield code="w">(DE-600)3041928-1</subfield><subfield code="x">2730-5724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:28</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s43670-022-00031-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">28</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Caragea, Andrei |
spellingShingle |
Caragea, Andrei misc Exponential bases misc Riesz bases misc Hierarchical structure misc Finite union of intervals misc Kronecker–Weyl equidistribution along the primes A note on exponential Riesz bases |
authorStr |
Caragea, Andrei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1735681601 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2730-5724 |
topic_title |
A note on exponential Riesz bases Exponential bases (dpeaa)DE-He213 Riesz bases (dpeaa)DE-He213 Hierarchical structure (dpeaa)DE-He213 Finite union of intervals (dpeaa)DE-He213 Kronecker–Weyl equidistribution along the primes (dpeaa)DE-He213 |
topic |
misc Exponential bases misc Riesz bases misc Hierarchical structure misc Finite union of intervals misc Kronecker–Weyl equidistribution along the primes |
topic_unstemmed |
misc Exponential bases misc Riesz bases misc Hierarchical structure misc Finite union of intervals misc Kronecker–Weyl equidistribution along the primes |
topic_browse |
misc Exponential bases misc Riesz bases misc Hierarchical structure misc Finite union of intervals misc Kronecker–Weyl equidistribution along the primes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sampling theory, signal processing, and data analysis |
hierarchy_parent_id |
1735681601 |
hierarchy_top_title |
Sampling theory, signal processing, and data analysis |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1735681601 (DE-600)3041928-1 |
title |
A note on exponential Riesz bases |
ctrlnum |
(DE-627)SPR047710616 (SPR)s43670-022-00031-9-e |
title_full |
A note on exponential Riesz bases |
author_sort |
Caragea, Andrei |
journal |
Sampling theory, signal processing, and data analysis |
journalStr |
Sampling theory, signal processing, and data analysis |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Caragea, Andrei Lee, Dae Gwan |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Caragea, Andrei |
doi_str_mv |
10.1007/s43670-022-00031-9 |
normlink |
(ORCID)0000-0002-0991-738X |
normlink_prefix_str_mv |
(orcid)0000-0002-0991-738X |
title_sort |
note on exponential riesz bases |
title_auth |
A note on exponential Riesz bases |
abstract |
Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. © The Author(s) 2022 |
abstractGer |
Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. © The Author(s) 2022 |
abstract_unstemmed |
Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
A note on exponential Riesz bases |
url |
https://dx.doi.org/10.1007/s43670-022-00031-9 |
remote_bool |
true |
author2 |
Lee, Dae Gwan |
author2Str |
Lee, Dae Gwan |
ppnlink |
1735681601 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s43670-022-00031-9 |
up_date |
2024-07-03T14:29:46.231Z |
_version_ |
1803568531357302784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047710616</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509121945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220729s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43670-022-00031-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047710616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43670-022-00031-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Caragea, Andrei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A note on exponential Riesz bases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that if %$I_\ell = [a_\ell ,b_\ell )%$, %$\ell =1,\ldots ,L%$, are disjoint intervals in [0, 1) with the property that the numbers %$1, a_1, \ldots , a_L, b_1, \ldots , b_L%$ are linearly independent over %${\mathbb {Q}}%$, then there exist pairwise disjoint sets %$\Lambda _\ell \subset {\mathbb {Z}}%$, %$\ell =1, \ldots , L%$, such that for every %$J \subset \{ 1, \ldots , L \}%$, the system %$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}%$ is a Riesz basis for %$L^2 ( \cup _{\ell \in J} \, I_\ell )%$. Also, we show that for any disjoint intervals %$I_\ell %$, %$\ell =1, \ldots , L%$, contained in [1, N) with %$N \in {\mathbb {N}}%$, the orthonormal basis %$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}%$ of %$L^2[0,1)%$ can be complemented by a Riesz basis %$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}%$ for %$L^2(\cup _{\ell =1}^L \, I_{\ell })%$ with some set %$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}%$, in the sense that their union %$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}%$ is a Riesz basis for %$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )%$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential bases</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz bases</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite union of intervals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kronecker–Weyl equidistribution along the primes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Dae Gwan</subfield><subfield code="0">(orcid)0000-0002-0991-738X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sampling theory, signal processing, and data analysis</subfield><subfield code="d">[Cham] : Birkhäuser, 2021</subfield><subfield code="g">20(2022), 2 vom: 28. Juli</subfield><subfield code="w">(DE-627)1735681601</subfield><subfield code="w">(DE-600)3041928-1</subfield><subfield code="x">2730-5724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:28</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s43670-022-00031-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">28</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.402272 |