Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications
Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct...
Ausführliche Beschreibung
Autor*in: |
Rana, Ujala [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of sol gel science and technology - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993, 103(2022), 3 vom: 12. Juli, Seite 704-712 |
---|---|
Übergeordnetes Werk: |
volume:103 ; year:2022 ; number:3 ; day:12 ; month:07 ; pages:704-712 |
Links: |
---|
DOI / URN: |
10.1007/s10971-022-05888-9 |
---|
Katalog-ID: |
SPR047714905 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047714905 | ||
003 | DE-627 | ||
005 | 20230508004219.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220730s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10971-022-05888-9 |2 doi | |
035 | |a (DE-627)SPR047714905 | ||
035 | |a (SPR)s10971-022-05888-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Rana, Ujala |e verfasserin |4 aut | |
245 | 1 | 0 | |a Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract | ||
520 | |a Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. | ||
650 | 4 | |a rGO/Cr |7 (dpeaa)DE-He213 | |
650 | 4 | |a S |7 (dpeaa)DE-He213 | |
650 | 4 | |a /NF nanocomposite |7 (dpeaa)DE-He213 | |
650 | 4 | |a Binder-free electrode |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electrochemical performance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Energy storage devices |7 (dpeaa)DE-He213 | |
700 | 1 | |a Aman, Salma |4 aut | |
700 | 1 | |a Ashiq, Muhammad Naeem |4 aut | |
700 | 1 | |a Iqbal, Muhammad Faisal |4 aut | |
700 | 1 | |a Manzoor, Sumaira |4 aut | |
700 | 1 | |a Mahmoud, M. H. H. |4 aut | |
700 | 1 | |a Alhadhrami, A. |4 aut | |
700 | 1 | |a Elansry, Hosam O. |4 aut | |
700 | 1 | |a El-Ansari, Diaa O. |4 aut | |
700 | 1 | |a Taha, T. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of sol gel science and technology |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993 |g 103(2022), 3 vom: 12. Juli, Seite 704-712 |w (DE-627)268757607 |w (DE-600)1472726-2 |x 1573-4846 |7 nnns |
773 | 1 | 8 | |g volume:103 |g year:2022 |g number:3 |g day:12 |g month:07 |g pages:704-712 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10971-022-05888-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 103 |j 2022 |e 3 |b 12 |c 07 |h 704-712 |
author_variant |
u r ur s a sa m n a mn mna m f i mf mfi s m sm m h h m mhh mhhm a a aa h o e ho hoe d o e a doe doea t a t ta tat |
---|---|
matchkey_str |
article:15734846:2022----::usadneetohmcleairfeuegahnoierpecrmuslieaoltsietyrwon |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10971-022-05888-9 doi (DE-627)SPR047714905 (SPR)s10971-022-05888-9-e DE-627 ger DE-627 rakwb eng Rana, Ujala verfasserin aut Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. rGO/Cr (dpeaa)DE-He213 S (dpeaa)DE-He213 /NF nanocomposite (dpeaa)DE-He213 Binder-free electrode (dpeaa)DE-He213 Electrochemical performance (dpeaa)DE-He213 Energy storage devices (dpeaa)DE-He213 Aman, Salma aut Ashiq, Muhammad Naeem aut Iqbal, Muhammad Faisal aut Manzoor, Sumaira aut Mahmoud, M. H. H. aut Alhadhrami, A. aut Elansry, Hosam O. aut El-Ansari, Diaa O. aut Taha, T. A. aut Enthalten in Journal of sol gel science and technology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993 103(2022), 3 vom: 12. Juli, Seite 704-712 (DE-627)268757607 (DE-600)1472726-2 1573-4846 nnns volume:103 year:2022 number:3 day:12 month:07 pages:704-712 https://dx.doi.org/10.1007/s10971-022-05888-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 103 2022 3 12 07 704-712 |
spelling |
10.1007/s10971-022-05888-9 doi (DE-627)SPR047714905 (SPR)s10971-022-05888-9-e DE-627 ger DE-627 rakwb eng Rana, Ujala verfasserin aut Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. rGO/Cr (dpeaa)DE-He213 S (dpeaa)DE-He213 /NF nanocomposite (dpeaa)DE-He213 Binder-free electrode (dpeaa)DE-He213 Electrochemical performance (dpeaa)DE-He213 Energy storage devices (dpeaa)DE-He213 Aman, Salma aut Ashiq, Muhammad Naeem aut Iqbal, Muhammad Faisal aut Manzoor, Sumaira aut Mahmoud, M. H. H. aut Alhadhrami, A. aut Elansry, Hosam O. aut El-Ansari, Diaa O. aut Taha, T. A. aut Enthalten in Journal of sol gel science and technology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993 103(2022), 3 vom: 12. Juli, Seite 704-712 (DE-627)268757607 (DE-600)1472726-2 1573-4846 nnns volume:103 year:2022 number:3 day:12 month:07 pages:704-712 https://dx.doi.org/10.1007/s10971-022-05888-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 103 2022 3 12 07 704-712 |
allfields_unstemmed |
10.1007/s10971-022-05888-9 doi (DE-627)SPR047714905 (SPR)s10971-022-05888-9-e DE-627 ger DE-627 rakwb eng Rana, Ujala verfasserin aut Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. rGO/Cr (dpeaa)DE-He213 S (dpeaa)DE-He213 /NF nanocomposite (dpeaa)DE-He213 Binder-free electrode (dpeaa)DE-He213 Electrochemical performance (dpeaa)DE-He213 Energy storage devices (dpeaa)DE-He213 Aman, Salma aut Ashiq, Muhammad Naeem aut Iqbal, Muhammad Faisal aut Manzoor, Sumaira aut Mahmoud, M. H. H. aut Alhadhrami, A. aut Elansry, Hosam O. aut El-Ansari, Diaa O. aut Taha, T. A. aut Enthalten in Journal of sol gel science and technology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993 103(2022), 3 vom: 12. Juli, Seite 704-712 (DE-627)268757607 (DE-600)1472726-2 1573-4846 nnns volume:103 year:2022 number:3 day:12 month:07 pages:704-712 https://dx.doi.org/10.1007/s10971-022-05888-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 103 2022 3 12 07 704-712 |
allfieldsGer |
10.1007/s10971-022-05888-9 doi (DE-627)SPR047714905 (SPR)s10971-022-05888-9-e DE-627 ger DE-627 rakwb eng Rana, Ujala verfasserin aut Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. rGO/Cr (dpeaa)DE-He213 S (dpeaa)DE-He213 /NF nanocomposite (dpeaa)DE-He213 Binder-free electrode (dpeaa)DE-He213 Electrochemical performance (dpeaa)DE-He213 Energy storage devices (dpeaa)DE-He213 Aman, Salma aut Ashiq, Muhammad Naeem aut Iqbal, Muhammad Faisal aut Manzoor, Sumaira aut Mahmoud, M. H. H. aut Alhadhrami, A. aut Elansry, Hosam O. aut El-Ansari, Diaa O. aut Taha, T. A. aut Enthalten in Journal of sol gel science and technology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993 103(2022), 3 vom: 12. Juli, Seite 704-712 (DE-627)268757607 (DE-600)1472726-2 1573-4846 nnns volume:103 year:2022 number:3 day:12 month:07 pages:704-712 https://dx.doi.org/10.1007/s10971-022-05888-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 103 2022 3 12 07 704-712 |
allfieldsSound |
10.1007/s10971-022-05888-9 doi (DE-627)SPR047714905 (SPR)s10971-022-05888-9-e DE-627 ger DE-627 rakwb eng Rana, Ujala verfasserin aut Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. rGO/Cr (dpeaa)DE-He213 S (dpeaa)DE-He213 /NF nanocomposite (dpeaa)DE-He213 Binder-free electrode (dpeaa)DE-He213 Electrochemical performance (dpeaa)DE-He213 Energy storage devices (dpeaa)DE-He213 Aman, Salma aut Ashiq, Muhammad Naeem aut Iqbal, Muhammad Faisal aut Manzoor, Sumaira aut Mahmoud, M. H. H. aut Alhadhrami, A. aut Elansry, Hosam O. aut El-Ansari, Diaa O. aut Taha, T. A. aut Enthalten in Journal of sol gel science and technology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993 103(2022), 3 vom: 12. Juli, Seite 704-712 (DE-627)268757607 (DE-600)1472726-2 1573-4846 nnns volume:103 year:2022 number:3 day:12 month:07 pages:704-712 https://dx.doi.org/10.1007/s10971-022-05888-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 103 2022 3 12 07 704-712 |
language |
English |
source |
Enthalten in Journal of sol gel science and technology 103(2022), 3 vom: 12. Juli, Seite 704-712 volume:103 year:2022 number:3 day:12 month:07 pages:704-712 |
sourceStr |
Enthalten in Journal of sol gel science and technology 103(2022), 3 vom: 12. Juli, Seite 704-712 volume:103 year:2022 number:3 day:12 month:07 pages:704-712 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
rGO/Cr S /NF nanocomposite Binder-free electrode Electrochemical performance Energy storage devices |
isfreeaccess_bool |
false |
container_title |
Journal of sol gel science and technology |
authorswithroles_txt_mv |
Rana, Ujala @@aut@@ Aman, Salma @@aut@@ Ashiq, Muhammad Naeem @@aut@@ Iqbal, Muhammad Faisal @@aut@@ Manzoor, Sumaira @@aut@@ Mahmoud, M. H. H. @@aut@@ Alhadhrami, A. @@aut@@ Elansry, Hosam O. @@aut@@ El-Ansari, Diaa O. @@aut@@ Taha, T. A. @@aut@@ |
publishDateDaySort_date |
2022-07-12T00:00:00Z |
hierarchy_top_id |
268757607 |
id |
SPR047714905 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047714905</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508004219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220730s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10971-022-05888-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047714905</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10971-022-05888-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rana, Ujala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rGO/Cr</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">/NF nanocomposite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binder-free electrode</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical performance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage devices</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aman, Salma</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ashiq, Muhammad Naeem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iqbal, Muhammad Faisal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manzoor, Sumaira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahmoud, M. H. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alhadhrami, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elansry, Hosam O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El-Ansari, Diaa O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taha, T. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of sol gel science and technology</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993</subfield><subfield code="g">103(2022), 3 vom: 12. Juli, Seite 704-712</subfield><subfield code="w">(DE-627)268757607</subfield><subfield code="w">(DE-600)1472726-2</subfield><subfield code="x">1573-4846</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:103</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:12</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:704-712</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10971-022-05888-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">103</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">12</subfield><subfield code="c">07</subfield><subfield code="h">704-712</subfield></datafield></record></collection>
|
author |
Rana, Ujala |
spellingShingle |
Rana, Ujala misc rGO/Cr misc S misc /NF nanocomposite misc Binder-free electrode misc Electrochemical performance misc Energy storage devices Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications |
authorStr |
Rana, Ujala |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268757607 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-4846 |
topic_title |
Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications rGO/Cr (dpeaa)DE-He213 S (dpeaa)DE-He213 /NF nanocomposite (dpeaa)DE-He213 Binder-free electrode (dpeaa)DE-He213 Electrochemical performance (dpeaa)DE-He213 Energy storage devices (dpeaa)DE-He213 |
topic |
misc rGO/Cr misc S misc /NF nanocomposite misc Binder-free electrode misc Electrochemical performance misc Energy storage devices |
topic_unstemmed |
misc rGO/Cr misc S misc /NF nanocomposite misc Binder-free electrode misc Electrochemical performance misc Energy storage devices |
topic_browse |
misc rGO/Cr misc S misc /NF nanocomposite misc Binder-free electrode misc Electrochemical performance misc Energy storage devices |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of sol gel science and technology |
hierarchy_parent_id |
268757607 |
hierarchy_top_title |
Journal of sol gel science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268757607 (DE-600)1472726-2 |
title |
Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications |
ctrlnum |
(DE-627)SPR047714905 (SPR)s10971-022-05888-9-e |
title_full |
Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications |
author_sort |
Rana, Ujala |
journal |
Journal of sol gel science and technology |
journalStr |
Journal of sol gel science and technology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
704 |
author_browse |
Rana, Ujala Aman, Salma Ashiq, Muhammad Naeem Iqbal, Muhammad Faisal Manzoor, Sumaira Mahmoud, M. H. H. Alhadhrami, A. Elansry, Hosam O. El-Ansari, Diaa O. Taha, T. A. |
container_volume |
103 |
format_se |
Elektronische Aufsätze |
author-letter |
Rana, Ujala |
doi_str_mv |
10.1007/s10971-022-05888-9 |
title_sort |
outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications |
title_auth |
Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications |
abstract |
Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications |
url |
https://dx.doi.org/10.1007/s10971-022-05888-9 |
remote_bool |
true |
author2 |
Aman, Salma Ashiq, Muhammad Naeem Iqbal, Muhammad Faisal Manzoor, Sumaira Mahmoud, M. H. H. Alhadhrami, A. Elansry, Hosam O. El-Ansari, Diaa O. Taha, T. A. |
author2Str |
Aman, Salma Ashiq, Muhammad Naeem Iqbal, Muhammad Faisal Manzoor, Sumaira Mahmoud, M. H. H. Alhadhrami, A. Elansry, Hosam O. El-Ansari, Diaa O. Taha, T. A. |
ppnlink |
268757607 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10971-022-05888-9 |
up_date |
2024-07-03T14:31:27.066Z |
_version_ |
1803568637088366592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047714905</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508004219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220730s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10971-022-05888-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047714905</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10971-022-05888-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rana, Ujala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Outstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Reduced graphene oxide wrapped metal chalcogenides nanostructures endure to pique interest as multifunctional materials, particularly in the discipline of energy storage and conversion because of the larger surface area. The present study presents a simple hydrothermal approach to construct the reduced graphene oxide (rGO) wrapped chromium sulfide (rGO/$ Cr_{2} %$ S_{3} $/NF). A wide range of analytical techniques like X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the structural and morphological properties. Due to the robust and porous structure of the rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite used as a binder-free electrode, which facilitates electrolyte diffusion and outstanding electrochemical performance. The electrochemical performances like cyclic voltammetry (CV) curves confirm the pseudocapacitive nature of rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite in an alkaline environment. The specific capacitance of rGO/$ Cr_{2} %$ S_{3} $/NF obtained via CV curves at a scan rate of 5 mV $ s^{−1} $ is 2563.12 F $ g^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $ and power density of 1607.14 W $ kg^{−1} $ at 2.0 mA $ cm^{−2} $ current density. Additionally, rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite exhibited good stability up to 1000 cycles, because rGO offers outstanding electrical conduction between the porous nickel foam (NF) current collector and $ Cr_{2} %$ S_{3} $. The exemplary electrochemical behavior of fine-tuned rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite favors practical application in supercapacitors as a nanostructure electrode material for future applications. Graphical abstract</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A simple and economic hydrothermal method has been used for the synthesis of rGO/$ Cr_{2} %$ S_{3} $/NF composite as an electrode material.The specific capacitance of nanocomposite was 2563.12 $ Fg^{−1} $ with an energy density of 87.50 Wh $ kg^{−1} $.rGO/$ Cr_{2} %$ S_{3} $/NF nanocomposite showed excellent stability up to 1000 cycles with 83% retention.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rGO/Cr</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">/NF nanocomposite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binder-free electrode</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical performance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage devices</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aman, Salma</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ashiq, Muhammad Naeem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iqbal, Muhammad Faisal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manzoor, Sumaira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahmoud, M. H. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alhadhrami, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elansry, Hosam O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El-Ansari, Diaa O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taha, T. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of sol gel science and technology</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1993</subfield><subfield code="g">103(2022), 3 vom: 12. Juli, Seite 704-712</subfield><subfield code="w">(DE-627)268757607</subfield><subfield code="w">(DE-600)1472726-2</subfield><subfield code="x">1573-4846</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:103</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:12</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:704-712</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10971-022-05888-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">103</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">12</subfield><subfield code="c">07</subfield><subfield code="h">704-712</subfield></datafield></record></collection>
|
score |
7.3993473 |