Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength
Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relati...
Ausführliche Beschreibung
Autor*in: |
Abdeldjalil, Mhammed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of concrete structures and materials - Berlin : Springer, 2012, 16(2022), 1 vom: 09. Aug. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2022 ; number:1 ; day:09 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s40069-022-00526-8 |
---|
Katalog-ID: |
SPR047799463 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047799463 | ||
003 | DE-627 | ||
005 | 20230509104943.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220809s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40069-022-00526-8 |2 doi | |
035 | |a (DE-627)SPR047799463 | ||
035 | |a (SPR)s40069-022-00526-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Abdeldjalil, Mhammed |e verfasserin |0 (orcid)0000-0003-1470-4247 |4 aut | |
245 | 1 | 0 | |a Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. | ||
650 | 4 | |a concrete |7 (dpeaa)DE-He213 | |
650 | 4 | |a compressive strength |7 (dpeaa)DE-He213 | |
650 | 4 | |a granularity |7 (dpeaa)DE-He213 | |
650 | 4 | |a fractal dimension |7 (dpeaa)DE-He213 | |
650 | 4 | |a unconventional parameter |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chouicha, Kaddour |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of concrete structures and materials |d Berlin : Springer, 2012 |g 16(2022), 1 vom: 09. Aug. |w (DE-627)752436694 |w (DE-600)2724363-1 |x 2234-1315 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2022 |g number:1 |g day:09 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40069-022-00526-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2022 |e 1 |b 09 |c 08 |
author_variant |
m a ma k c kc |
---|---|
matchkey_str |
article:22341315:2022----::fetfhcmntwtraiadrcagauamdlnhpeitoocn |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s40069-022-00526-8 doi (DE-627)SPR047799463 (SPR)s40069-022-00526-8-e DE-627 ger DE-627 rakwb eng Abdeldjalil, Mhammed verfasserin (orcid)0000-0003-1470-4247 aut Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. concrete (dpeaa)DE-He213 compressive strength (dpeaa)DE-He213 granularity (dpeaa)DE-He213 fractal dimension (dpeaa)DE-He213 unconventional parameter (dpeaa)DE-He213 Chouicha, Kaddour aut Enthalten in International journal of concrete structures and materials Berlin : Springer, 2012 16(2022), 1 vom: 09. Aug. (DE-627)752436694 (DE-600)2724363-1 2234-1315 nnns volume:16 year:2022 number:1 day:09 month:08 https://dx.doi.org/10.1186/s40069-022-00526-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2022 1 09 08 |
spelling |
10.1186/s40069-022-00526-8 doi (DE-627)SPR047799463 (SPR)s40069-022-00526-8-e DE-627 ger DE-627 rakwb eng Abdeldjalil, Mhammed verfasserin (orcid)0000-0003-1470-4247 aut Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. concrete (dpeaa)DE-He213 compressive strength (dpeaa)DE-He213 granularity (dpeaa)DE-He213 fractal dimension (dpeaa)DE-He213 unconventional parameter (dpeaa)DE-He213 Chouicha, Kaddour aut Enthalten in International journal of concrete structures and materials Berlin : Springer, 2012 16(2022), 1 vom: 09. Aug. (DE-627)752436694 (DE-600)2724363-1 2234-1315 nnns volume:16 year:2022 number:1 day:09 month:08 https://dx.doi.org/10.1186/s40069-022-00526-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2022 1 09 08 |
allfields_unstemmed |
10.1186/s40069-022-00526-8 doi (DE-627)SPR047799463 (SPR)s40069-022-00526-8-e DE-627 ger DE-627 rakwb eng Abdeldjalil, Mhammed verfasserin (orcid)0000-0003-1470-4247 aut Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. concrete (dpeaa)DE-He213 compressive strength (dpeaa)DE-He213 granularity (dpeaa)DE-He213 fractal dimension (dpeaa)DE-He213 unconventional parameter (dpeaa)DE-He213 Chouicha, Kaddour aut Enthalten in International journal of concrete structures and materials Berlin : Springer, 2012 16(2022), 1 vom: 09. Aug. (DE-627)752436694 (DE-600)2724363-1 2234-1315 nnns volume:16 year:2022 number:1 day:09 month:08 https://dx.doi.org/10.1186/s40069-022-00526-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2022 1 09 08 |
allfieldsGer |
10.1186/s40069-022-00526-8 doi (DE-627)SPR047799463 (SPR)s40069-022-00526-8-e DE-627 ger DE-627 rakwb eng Abdeldjalil, Mhammed verfasserin (orcid)0000-0003-1470-4247 aut Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. concrete (dpeaa)DE-He213 compressive strength (dpeaa)DE-He213 granularity (dpeaa)DE-He213 fractal dimension (dpeaa)DE-He213 unconventional parameter (dpeaa)DE-He213 Chouicha, Kaddour aut Enthalten in International journal of concrete structures and materials Berlin : Springer, 2012 16(2022), 1 vom: 09. Aug. (DE-627)752436694 (DE-600)2724363-1 2234-1315 nnns volume:16 year:2022 number:1 day:09 month:08 https://dx.doi.org/10.1186/s40069-022-00526-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2022 1 09 08 |
allfieldsSound |
10.1186/s40069-022-00526-8 doi (DE-627)SPR047799463 (SPR)s40069-022-00526-8-e DE-627 ger DE-627 rakwb eng Abdeldjalil, Mhammed verfasserin (orcid)0000-0003-1470-4247 aut Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. concrete (dpeaa)DE-He213 compressive strength (dpeaa)DE-He213 granularity (dpeaa)DE-He213 fractal dimension (dpeaa)DE-He213 unconventional parameter (dpeaa)DE-He213 Chouicha, Kaddour aut Enthalten in International journal of concrete structures and materials Berlin : Springer, 2012 16(2022), 1 vom: 09. Aug. (DE-627)752436694 (DE-600)2724363-1 2234-1315 nnns volume:16 year:2022 number:1 day:09 month:08 https://dx.doi.org/10.1186/s40069-022-00526-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 16 2022 1 09 08 |
language |
English |
source |
Enthalten in International journal of concrete structures and materials 16(2022), 1 vom: 09. Aug. volume:16 year:2022 number:1 day:09 month:08 |
sourceStr |
Enthalten in International journal of concrete structures and materials 16(2022), 1 vom: 09. Aug. volume:16 year:2022 number:1 day:09 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
concrete compressive strength granularity fractal dimension unconventional parameter |
isfreeaccess_bool |
true |
container_title |
International journal of concrete structures and materials |
authorswithroles_txt_mv |
Abdeldjalil, Mhammed @@aut@@ Chouicha, Kaddour @@aut@@ |
publishDateDaySort_date |
2022-08-09T00:00:00Z |
hierarchy_top_id |
752436694 |
id |
SPR047799463 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047799463</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509104943.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220809s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40069-022-00526-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047799463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40069-022-00526-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abdeldjalil, Mhammed</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1470-4247</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concrete</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressive strength</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">granularity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractal dimension</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unconventional parameter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chouicha, Kaddour</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of concrete structures and materials</subfield><subfield code="d">Berlin : Springer, 2012</subfield><subfield code="g">16(2022), 1 vom: 09. Aug.</subfield><subfield code="w">(DE-627)752436694</subfield><subfield code="w">(DE-600)2724363-1</subfield><subfield code="x">2234-1315</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40069-022-00526-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Abdeldjalil, Mhammed |
spellingShingle |
Abdeldjalil, Mhammed misc concrete misc compressive strength misc granularity misc fractal dimension misc unconventional parameter Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength |
authorStr |
Abdeldjalil, Mhammed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)752436694 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2234-1315 |
topic_title |
Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength concrete (dpeaa)DE-He213 compressive strength (dpeaa)DE-He213 granularity (dpeaa)DE-He213 fractal dimension (dpeaa)DE-He213 unconventional parameter (dpeaa)DE-He213 |
topic |
misc concrete misc compressive strength misc granularity misc fractal dimension misc unconventional parameter |
topic_unstemmed |
misc concrete misc compressive strength misc granularity misc fractal dimension misc unconventional parameter |
topic_browse |
misc concrete misc compressive strength misc granularity misc fractal dimension misc unconventional parameter |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of concrete structures and materials |
hierarchy_parent_id |
752436694 |
hierarchy_top_title |
International journal of concrete structures and materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)752436694 (DE-600)2724363-1 |
title |
Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength |
ctrlnum |
(DE-627)SPR047799463 (SPR)s40069-022-00526-8-e |
title_full |
Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength |
author_sort |
Abdeldjalil, Mhammed |
journal |
International journal of concrete structures and materials |
journalStr |
International journal of concrete structures and materials |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Abdeldjalil, Mhammed Chouicha, Kaddour |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Abdeldjalil, Mhammed |
doi_str_mv |
10.1186/s40069-022-00526-8 |
normlink |
(ORCID)0000-0003-1470-4247 |
normlink_prefix_str_mv |
(orcid)0000-0003-1470-4247 |
title_sort |
effect of the cement-to-water ratio and fractal granular model on the prediction of concretes compressive strength |
title_auth |
Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength |
abstract |
Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. © The Author(s) 2022 |
abstractGer |
Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. © The Author(s) 2022 |
abstract_unstemmed |
Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength |
url |
https://dx.doi.org/10.1186/s40069-022-00526-8 |
remote_bool |
true |
author2 |
Chouicha, Kaddour |
author2Str |
Chouicha, Kaddour |
ppnlink |
752436694 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40069-022-00526-8 |
up_date |
2024-07-03T15:03:18.516Z |
_version_ |
1803570641392107520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047799463</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509104943.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220809s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40069-022-00526-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047799463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40069-022-00526-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abdeldjalil, Mhammed</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1470-4247</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of the Cement-to-Water Ratio and Fractal Granular Model on the Prediction of Concretes Compressive Strength</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The main objective of this work was to highlight the contribution of cement-to-water %$\mathrm{C}/\mathrm{W}%$ ratio and the fractal dimension %$\mathrm{FD}%$ model to the prediction of the compressive strength of concrete. In particular, the fractal dimension %$\mathrm{FD}%$ concept relative to the size distribution of the granular mixtures provided an insight into the fineness and compactness of the granular mixtures. The unconventional fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ also effectively contributed to highlight the correlation between cement-to-water ratio and compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of concretes. Initially, 99 granular mixtures of concretes composition available in literature were investigated and for which the granular distributions by means of the fractal dimension %$\mathrm{FD}%$ model and the granular range %$\mathrm{D}/\mathrm{d}%$ were we determined. Then, 36 concrete mixtures endowed with different granular mixtures were elaborated and analysed. These enabled to validate and evaluate the reliability of the basic granular fractal model %${\mathrm{FGM}}_{\mathrm{g}}%$ and the influence of cement–water %$\mathrm{C}/\mathrm{W}%$ ratio of concretes mixtures when predicting the concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}.%$ The analytical model provided a close correlation with the experimental values of the compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$ of all the concretes. The correlation highlighted the relevance of including fractal granular model %${\mathrm{FGM}}_{\mathrm{g}}%$ that denoted the skeleton of the concretes and the cement–water %$\mathrm{C}/\mathrm{W}%$ ratio that referred to the binders into concretes mixtures when predicting %${\mathrm{R}}_{\mathrm{C}28}%$. The theoretical approach whose effectiveness was highlighted using a "limited" number of real case studies may pave the way for further studies, when selecting the two key-factors for the prediction of concretes compressive strength %${\mathrm{R}}_{\mathrm{C}28}%$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concrete</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressive strength</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">granularity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractal dimension</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unconventional parameter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chouicha, Kaddour</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of concrete structures and materials</subfield><subfield code="d">Berlin : Springer, 2012</subfield><subfield code="g">16(2022), 1 vom: 09. Aug.</subfield><subfield code="w">(DE-627)752436694</subfield><subfield code="w">(DE-600)2724363-1</subfield><subfield code="x">2234-1315</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40069-022-00526-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.401016 |