Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens
The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum...
Ausführliche Beschreibung
Autor*in: |
Sharma, Shakshi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: BioNanoScience - New York, NY [u.a.] : Springer, 2011, 12(2022), 3 vom: 06. Juli, Seite 833-840 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:3 ; day:06 ; month:07 ; pages:833-840 |
Links: |
---|
DOI / URN: |
10.1007/s12668-022-01004-x |
---|
Katalog-ID: |
SPR047810572 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047810572 | ||
003 | DE-627 | ||
005 | 20230509105110.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220810s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12668-022-01004-x |2 doi | |
035 | |a (DE-627)SPR047810572 | ||
035 | |a (SPR)s12668-022-01004-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sharma, Shakshi |e verfasserin |0 (orcid)0000-0002-1669-0873 |4 aut | |
245 | 1 | 0 | |a Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract | ||
650 | 4 | |a AgNP |7 (dpeaa)DE-He213 | |
650 | 4 | |a Probiotics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Antimicrobial |7 (dpeaa)DE-He213 | |
650 | 4 | |a TEM |7 (dpeaa)DE-He213 | |
650 | 4 | |a FTIR |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sharma, Nivedita |4 aut | |
700 | 1 | |a Kaushal, Neha |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BioNanoScience |d New York, NY [u.a.] : Springer, 2011 |g 12(2022), 3 vom: 06. Juli, Seite 833-840 |w (DE-627)657588601 |w (DE-600)2606470-4 |x 2191-1649 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:3 |g day:06 |g month:07 |g pages:833-840 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12668-022-01004-x |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 3 |b 06 |c 07 |h 833-840 |
author_variant |
s s ss n s ns n k nk |
---|---|
matchkey_str |
article:21911649:2022----::oprtvacutfigncyteioslennprilssnpoitcadhiatmcoilc |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s12668-022-01004-x doi (DE-627)SPR047810572 (SPR)s12668-022-01004-x-e DE-627 ger DE-627 rakwb eng Sharma, Shakshi verfasserin (orcid)0000-0002-1669-0873 aut Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract AgNP (dpeaa)DE-He213 Probiotics (dpeaa)DE-He213 Antimicrobial (dpeaa)DE-He213 TEM (dpeaa)DE-He213 FTIR (dpeaa)DE-He213 Sharma, Nivedita aut Kaushal, Neha aut Enthalten in BioNanoScience New York, NY [u.a.] : Springer, 2011 12(2022), 3 vom: 06. Juli, Seite 833-840 (DE-627)657588601 (DE-600)2606470-4 2191-1649 nnns volume:12 year:2022 number:3 day:06 month:07 pages:833-840 https://dx.doi.org/10.1007/s12668-022-01004-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 3 06 07 833-840 |
spelling |
10.1007/s12668-022-01004-x doi (DE-627)SPR047810572 (SPR)s12668-022-01004-x-e DE-627 ger DE-627 rakwb eng Sharma, Shakshi verfasserin (orcid)0000-0002-1669-0873 aut Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract AgNP (dpeaa)DE-He213 Probiotics (dpeaa)DE-He213 Antimicrobial (dpeaa)DE-He213 TEM (dpeaa)DE-He213 FTIR (dpeaa)DE-He213 Sharma, Nivedita aut Kaushal, Neha aut Enthalten in BioNanoScience New York, NY [u.a.] : Springer, 2011 12(2022), 3 vom: 06. Juli, Seite 833-840 (DE-627)657588601 (DE-600)2606470-4 2191-1649 nnns volume:12 year:2022 number:3 day:06 month:07 pages:833-840 https://dx.doi.org/10.1007/s12668-022-01004-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 3 06 07 833-840 |
allfields_unstemmed |
10.1007/s12668-022-01004-x doi (DE-627)SPR047810572 (SPR)s12668-022-01004-x-e DE-627 ger DE-627 rakwb eng Sharma, Shakshi verfasserin (orcid)0000-0002-1669-0873 aut Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract AgNP (dpeaa)DE-He213 Probiotics (dpeaa)DE-He213 Antimicrobial (dpeaa)DE-He213 TEM (dpeaa)DE-He213 FTIR (dpeaa)DE-He213 Sharma, Nivedita aut Kaushal, Neha aut Enthalten in BioNanoScience New York, NY [u.a.] : Springer, 2011 12(2022), 3 vom: 06. Juli, Seite 833-840 (DE-627)657588601 (DE-600)2606470-4 2191-1649 nnns volume:12 year:2022 number:3 day:06 month:07 pages:833-840 https://dx.doi.org/10.1007/s12668-022-01004-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 3 06 07 833-840 |
allfieldsGer |
10.1007/s12668-022-01004-x doi (DE-627)SPR047810572 (SPR)s12668-022-01004-x-e DE-627 ger DE-627 rakwb eng Sharma, Shakshi verfasserin (orcid)0000-0002-1669-0873 aut Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract AgNP (dpeaa)DE-He213 Probiotics (dpeaa)DE-He213 Antimicrobial (dpeaa)DE-He213 TEM (dpeaa)DE-He213 FTIR (dpeaa)DE-He213 Sharma, Nivedita aut Kaushal, Neha aut Enthalten in BioNanoScience New York, NY [u.a.] : Springer, 2011 12(2022), 3 vom: 06. Juli, Seite 833-840 (DE-627)657588601 (DE-600)2606470-4 2191-1649 nnns volume:12 year:2022 number:3 day:06 month:07 pages:833-840 https://dx.doi.org/10.1007/s12668-022-01004-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 3 06 07 833-840 |
allfieldsSound |
10.1007/s12668-022-01004-x doi (DE-627)SPR047810572 (SPR)s12668-022-01004-x-e DE-627 ger DE-627 rakwb eng Sharma, Shakshi verfasserin (orcid)0000-0002-1669-0873 aut Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract AgNP (dpeaa)DE-He213 Probiotics (dpeaa)DE-He213 Antimicrobial (dpeaa)DE-He213 TEM (dpeaa)DE-He213 FTIR (dpeaa)DE-He213 Sharma, Nivedita aut Kaushal, Neha aut Enthalten in BioNanoScience New York, NY [u.a.] : Springer, 2011 12(2022), 3 vom: 06. Juli, Seite 833-840 (DE-627)657588601 (DE-600)2606470-4 2191-1649 nnns volume:12 year:2022 number:3 day:06 month:07 pages:833-840 https://dx.doi.org/10.1007/s12668-022-01004-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 3 06 07 833-840 |
language |
English |
source |
Enthalten in BioNanoScience 12(2022), 3 vom: 06. Juli, Seite 833-840 volume:12 year:2022 number:3 day:06 month:07 pages:833-840 |
sourceStr |
Enthalten in BioNanoScience 12(2022), 3 vom: 06. Juli, Seite 833-840 volume:12 year:2022 number:3 day:06 month:07 pages:833-840 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
AgNP Probiotics Antimicrobial TEM FTIR |
isfreeaccess_bool |
true |
container_title |
BioNanoScience |
authorswithroles_txt_mv |
Sharma, Shakshi @@aut@@ Sharma, Nivedita @@aut@@ Kaushal, Neha @@aut@@ |
publishDateDaySort_date |
2022-07-06T00:00:00Z |
hierarchy_top_id |
657588601 |
id |
SPR047810572 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047810572</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509105110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220810s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12668-022-01004-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047810572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12668-022-01004-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sharma, Shakshi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1669-0873</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AgNP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probiotics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antimicrobial</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FTIR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharma, Nivedita</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaushal, Neha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BioNanoScience</subfield><subfield code="d">New York, NY [u.a.] : Springer, 2011</subfield><subfield code="g">12(2022), 3 vom: 06. Juli, Seite 833-840</subfield><subfield code="w">(DE-627)657588601</subfield><subfield code="w">(DE-600)2606470-4</subfield><subfield code="x">2191-1649</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:06</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:833-840</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12668-022-01004-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">06</subfield><subfield code="c">07</subfield><subfield code="h">833-840</subfield></datafield></record></collection>
|
author |
Sharma, Shakshi |
spellingShingle |
Sharma, Shakshi misc AgNP misc Probiotics misc Antimicrobial misc TEM misc FTIR Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens |
authorStr |
Sharma, Shakshi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657588601 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2191-1649 |
topic_title |
Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens AgNP (dpeaa)DE-He213 Probiotics (dpeaa)DE-He213 Antimicrobial (dpeaa)DE-He213 TEM (dpeaa)DE-He213 FTIR (dpeaa)DE-He213 |
topic |
misc AgNP misc Probiotics misc Antimicrobial misc TEM misc FTIR |
topic_unstemmed |
misc AgNP misc Probiotics misc Antimicrobial misc TEM misc FTIR |
topic_browse |
misc AgNP misc Probiotics misc Antimicrobial misc TEM misc FTIR |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BioNanoScience |
hierarchy_parent_id |
657588601 |
hierarchy_top_title |
BioNanoScience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657588601 (DE-600)2606470-4 |
title |
Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens |
ctrlnum |
(DE-627)SPR047810572 (SPR)s12668-022-01004-x-e |
title_full |
Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens |
author_sort |
Sharma, Shakshi |
journal |
BioNanoScience |
journalStr |
BioNanoScience |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
833 |
author_browse |
Sharma, Shakshi Sharma, Nivedita Kaushal, Neha |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Sharma, Shakshi |
doi_str_mv |
10.1007/s12668-022-01004-x |
normlink |
(ORCID)0000-0002-1669-0873 |
normlink_prefix_str_mv |
(orcid)0000-0002-1669-0873 |
title_sort |
comparative account of biogenic synthesis of silver nanoparticles using probiotics and their antimicrobial activity against challenging pathogens |
title_auth |
Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens |
abstract |
The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract © The Author(s) 2022 |
abstractGer |
The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract © The Author(s) 2022 |
abstract_unstemmed |
The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens |
url |
https://dx.doi.org/10.1007/s12668-022-01004-x |
remote_bool |
true |
author2 |
Sharma, Nivedita Kaushal, Neha |
author2Str |
Sharma, Nivedita Kaushal, Neha |
ppnlink |
657588601 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12668-022-01004-x |
up_date |
2024-07-03T15:07:37.503Z |
_version_ |
1803570912959660032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047810572</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509105110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220810s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12668-022-01004-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047810572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12668-022-01004-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sharma, Shakshi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1669-0873</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present work focusses on development of a safe, inexpensive, and more accessible source for biosynthesis of silver nanoparticles. Four different in-house probiotic isolates, i.e., Lactobacillus pentosus S6, Lactobacillus plantarum F22, Lactobacillus crustorum F11, and Lactobacillus paraplantarum KM1 isolated from different food sources, were used in the current study to check their ability to synthesize silver nanoparticles. All the probiotic-synthesized silver nanoparticles show maximum surface plasmon resonance (SPR) at a peak of 450 nm, which confirms the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis identified the shape and distribution of silver nanoparticles. Transmission electron microscopy (TEM) revealed the average size of synthesized nanoparticles in the range of 10–50 nm, with the smallest size of 5 nm for silver nanoparticles synthesized by L. crustorum F11. Further, Fourier-transform infrared spectroscopy (FTIR) detected the presence of different functional groups responsible for reduction of silver ion to form silver nanoparticles. The antimicrobial activity of these AgNPs was also found to be effective against different bacterial and fungal pathogens, viz., antibiotic-resistant Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pythium aphanidermatum, Fusarium oxysporum, and Phytopthora parasitica. However, L. crustorum F11–synthesized AgNP showed maximum inhibition against all the bacterial and fungal pathogens, with highest against S. aureus (20 ± 0.61 mm) and F. oxysporum (23 ± 0.37). Findings from this study provide a durable and eco-friendly method for the biosynthesis of silver nanoparticles, having strong antimicrobial activity against different multidrug-resistant microorganisms. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AgNP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probiotics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antimicrobial</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FTIR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharma, Nivedita</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaushal, Neha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BioNanoScience</subfield><subfield code="d">New York, NY [u.a.] : Springer, 2011</subfield><subfield code="g">12(2022), 3 vom: 06. Juli, Seite 833-840</subfield><subfield code="w">(DE-627)657588601</subfield><subfield code="w">(DE-600)2606470-4</subfield><subfield code="x">2191-1649</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:06</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:833-840</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12668-022-01004-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">06</subfield><subfield code="c">07</subfield><subfield code="h">833-840</subfield></datafield></record></collection>
|
score |
7.399561 |