A study on average run length of fuzzy EWMA control chart
Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average...
Ausführliche Beschreibung
Autor*in: |
Khan, Muhammad Zahir [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 26(2022), 18 vom: 09. Juli, Seite 9117-9124 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2022 ; number:18 ; day:09 ; month:07 ; pages:9117-9124 |
Links: |
---|
DOI / URN: |
10.1007/s00500-022-07310-6 |
---|
Katalog-ID: |
SPR047869127 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047869127 | ||
003 | DE-627 | ||
005 | 20230509105919.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220818s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-022-07310-6 |2 doi | |
035 | |a (DE-627)SPR047869127 | ||
035 | |a (SPR)s00500-022-07310-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Khan, Muhammad Zahir |e verfasserin |4 aut | |
245 | 1 | 2 | |a A study on average run length of fuzzy EWMA control chart |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. | ||
650 | 4 | |a Control chart |7 (dpeaa)DE-He213 | |
650 | 4 | |a EWMA statistics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Simulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Average run length |7 (dpeaa)DE-He213 | |
650 | 4 | |a Shift |7 (dpeaa)DE-He213 | |
700 | 1 | |a Khan, Muhammad Farid |4 aut | |
700 | 1 | |a Aslam, Muhammad |0 (orcid)0000-0003-0644-1950 |4 aut | |
700 | 1 | |a Mughal, Abdur Razzaque |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 26(2022), 18 vom: 09. Juli, Seite 9117-9124 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2022 |g number:18 |g day:09 |g month:07 |g pages:9117-9124 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-022-07310-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 26 |j 2022 |e 18 |b 09 |c 07 |h 9117-9124 |
author_variant |
m z k mz mzk m f k mf mfk m a ma a r m ar arm |
---|---|
matchkey_str |
khanmuhammadzahirkhanmuhammadfaridaslamm:2022----:suynvrgrneghfuze |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00500-022-07310-6 doi (DE-627)SPR047869127 (SPR)s00500-022-07310-6-e DE-627 ger DE-627 rakwb eng Khan, Muhammad Zahir verfasserin aut A study on average run length of fuzzy EWMA control chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. Control chart (dpeaa)DE-He213 EWMA statistics (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Average run length (dpeaa)DE-He213 Shift (dpeaa)DE-He213 Khan, Muhammad Farid aut Aslam, Muhammad (orcid)0000-0003-0644-1950 aut Mughal, Abdur Razzaque aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 18 vom: 09. Juli, Seite 9117-9124 (DE-627)SPR006469531 nnns volume:26 year:2022 number:18 day:09 month:07 pages:9117-9124 https://dx.doi.org/10.1007/s00500-022-07310-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 18 09 07 9117-9124 |
spelling |
10.1007/s00500-022-07310-6 doi (DE-627)SPR047869127 (SPR)s00500-022-07310-6-e DE-627 ger DE-627 rakwb eng Khan, Muhammad Zahir verfasserin aut A study on average run length of fuzzy EWMA control chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. Control chart (dpeaa)DE-He213 EWMA statistics (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Average run length (dpeaa)DE-He213 Shift (dpeaa)DE-He213 Khan, Muhammad Farid aut Aslam, Muhammad (orcid)0000-0003-0644-1950 aut Mughal, Abdur Razzaque aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 18 vom: 09. Juli, Seite 9117-9124 (DE-627)SPR006469531 nnns volume:26 year:2022 number:18 day:09 month:07 pages:9117-9124 https://dx.doi.org/10.1007/s00500-022-07310-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 18 09 07 9117-9124 |
allfields_unstemmed |
10.1007/s00500-022-07310-6 doi (DE-627)SPR047869127 (SPR)s00500-022-07310-6-e DE-627 ger DE-627 rakwb eng Khan, Muhammad Zahir verfasserin aut A study on average run length of fuzzy EWMA control chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. Control chart (dpeaa)DE-He213 EWMA statistics (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Average run length (dpeaa)DE-He213 Shift (dpeaa)DE-He213 Khan, Muhammad Farid aut Aslam, Muhammad (orcid)0000-0003-0644-1950 aut Mughal, Abdur Razzaque aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 18 vom: 09. Juli, Seite 9117-9124 (DE-627)SPR006469531 nnns volume:26 year:2022 number:18 day:09 month:07 pages:9117-9124 https://dx.doi.org/10.1007/s00500-022-07310-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 18 09 07 9117-9124 |
allfieldsGer |
10.1007/s00500-022-07310-6 doi (DE-627)SPR047869127 (SPR)s00500-022-07310-6-e DE-627 ger DE-627 rakwb eng Khan, Muhammad Zahir verfasserin aut A study on average run length of fuzzy EWMA control chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. Control chart (dpeaa)DE-He213 EWMA statistics (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Average run length (dpeaa)DE-He213 Shift (dpeaa)DE-He213 Khan, Muhammad Farid aut Aslam, Muhammad (orcid)0000-0003-0644-1950 aut Mughal, Abdur Razzaque aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 18 vom: 09. Juli, Seite 9117-9124 (DE-627)SPR006469531 nnns volume:26 year:2022 number:18 day:09 month:07 pages:9117-9124 https://dx.doi.org/10.1007/s00500-022-07310-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 18 09 07 9117-9124 |
allfieldsSound |
10.1007/s00500-022-07310-6 doi (DE-627)SPR047869127 (SPR)s00500-022-07310-6-e DE-627 ger DE-627 rakwb eng Khan, Muhammad Zahir verfasserin aut A study on average run length of fuzzy EWMA control chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. Control chart (dpeaa)DE-He213 EWMA statistics (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Average run length (dpeaa)DE-He213 Shift (dpeaa)DE-He213 Khan, Muhammad Farid aut Aslam, Muhammad (orcid)0000-0003-0644-1950 aut Mughal, Abdur Razzaque aut Enthalten in Soft Computing Springer-Verlag, 2003 26(2022), 18 vom: 09. Juli, Seite 9117-9124 (DE-627)SPR006469531 nnns volume:26 year:2022 number:18 day:09 month:07 pages:9117-9124 https://dx.doi.org/10.1007/s00500-022-07310-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 26 2022 18 09 07 9117-9124 |
language |
English |
source |
Enthalten in Soft Computing 26(2022), 18 vom: 09. Juli, Seite 9117-9124 volume:26 year:2022 number:18 day:09 month:07 pages:9117-9124 |
sourceStr |
Enthalten in Soft Computing 26(2022), 18 vom: 09. Juli, Seite 9117-9124 volume:26 year:2022 number:18 day:09 month:07 pages:9117-9124 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Control chart EWMA statistics Simulation Average run length Shift |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Khan, Muhammad Zahir @@aut@@ Khan, Muhammad Farid @@aut@@ Aslam, Muhammad @@aut@@ Mughal, Abdur Razzaque @@aut@@ |
publishDateDaySort_date |
2022-07-09T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR047869127 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047869127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509105919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220818s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-022-07310-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047869127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-022-07310-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khan, Muhammad Zahir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A study on average run length of fuzzy EWMA control chart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control chart</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EWMA statistics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Average run length</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shift</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Muhammad Farid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aslam, Muhammad</subfield><subfield code="0">(orcid)0000-0003-0644-1950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mughal, Abdur Razzaque</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">26(2022), 18 vom: 09. Juli, Seite 9117-9124</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18</subfield><subfield code="g">day:09</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:9117-9124</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-022-07310-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">18</subfield><subfield code="b">09</subfield><subfield code="c">07</subfield><subfield code="h">9117-9124</subfield></datafield></record></collection>
|
author |
Khan, Muhammad Zahir |
spellingShingle |
Khan, Muhammad Zahir misc Control chart misc EWMA statistics misc Simulation misc Average run length misc Shift A study on average run length of fuzzy EWMA control chart |
authorStr |
Khan, Muhammad Zahir |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
A study on average run length of fuzzy EWMA control chart Control chart (dpeaa)DE-He213 EWMA statistics (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Average run length (dpeaa)DE-He213 Shift (dpeaa)DE-He213 |
topic |
misc Control chart misc EWMA statistics misc Simulation misc Average run length misc Shift |
topic_unstemmed |
misc Control chart misc EWMA statistics misc Simulation misc Average run length misc Shift |
topic_browse |
misc Control chart misc EWMA statistics misc Simulation misc Average run length misc Shift |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
A study on average run length of fuzzy EWMA control chart |
ctrlnum |
(DE-627)SPR047869127 (SPR)s00500-022-07310-6-e |
title_full |
A study on average run length of fuzzy EWMA control chart |
author_sort |
Khan, Muhammad Zahir |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
9117 |
author_browse |
Khan, Muhammad Zahir Khan, Muhammad Farid Aslam, Muhammad Mughal, Abdur Razzaque |
container_volume |
26 |
format_se |
Elektronische Aufsätze |
author-letter |
Khan, Muhammad Zahir |
doi_str_mv |
10.1007/s00500-022-07310-6 |
normlink |
(ORCID)0000-0003-0644-1950 |
normlink_prefix_str_mv |
(orcid)0000-0003-0644-1950 |
title_sort |
study on average run length of fuzzy ewma control chart |
title_auth |
A study on average run length of fuzzy EWMA control chart |
abstract |
Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
18 |
title_short |
A study on average run length of fuzzy EWMA control chart |
url |
https://dx.doi.org/10.1007/s00500-022-07310-6 |
remote_bool |
true |
author2 |
Khan, Muhammad Farid Aslam, Muhammad Mughal, Abdur Razzaque |
author2Str |
Khan, Muhammad Farid Aslam, Muhammad Mughal, Abdur Razzaque |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-022-07310-6 |
up_date |
2024-07-03T15:31:37.126Z |
_version_ |
1803572422512738304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047869127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509105919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220818s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-022-07310-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047869127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-022-07310-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khan, Muhammad Zahir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A study on average run length of fuzzy EWMA control chart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Quality control charts are one of the main features of statistical process control. The performance of control charts is assessed on the basis of the average run length (Shepherd and Shi (1998) IFAC Proc Vol 31(16):435–440. https://doi.org/10.1016/S1474-6670(17)40518-0). ARL is the average number of sample points that must be plotted before a point shows an out-of-control condition. In-control average run length ($ ARL_{0} $) and out-of-control average run length ($ ARL_{1} $) are two types of ARLs. These values of $ ARL_{0} $ show the false alarm when the process is in control, and $ ARL_{1} $ indicates the true alarm when the process is out of control. The control chart that generates fewer ARL is considered more efficient. The exponentiated weighted moving average (EWMA) is used to detect small shifts in the process In this article comparative performance of one of the exponentially weighted moving average (EWMA) control charts are evaluated using ARLs in conventional and fuzzy environments. The novelty of the study is that the comparison between Fuzzy EWMA and conventional EWMA was made. The fuzzy EWMA chart detects a shift at the 20th sample, while the conventional EWMA chart detects the same shift at the 25th sample. A conventional and fuzzy EWMA control chart based on the real-life example of a measurement of food color is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control chart</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EWMA statistics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Average run length</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shift</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Muhammad Farid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aslam, Muhammad</subfield><subfield code="0">(orcid)0000-0003-0644-1950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mughal, Abdur Razzaque</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">26(2022), 18 vom: 09. Juli, Seite 9117-9124</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18</subfield><subfield code="g">day:09</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:9117-9124</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-022-07310-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">18</subfield><subfield code="b">09</subfield><subfield code="c">07</subfield><subfield code="h">9117-9124</subfield></datafield></record></collection>
|
score |
7.4001484 |