Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction
Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots...
Ausführliche Beschreibung
Autor*in: |
Zhang, Fuqiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Autonomous intelligent systems - [Singapore] : Springer Singapore, 2021, 2(2022), 1 vom: 25. Aug. |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2022 ; number:1 ; day:25 ; month:08 |
Links: |
---|
DOI / URN: |
10.1007/s43684-022-00039-x |
---|
Katalog-ID: |
SPR047955988 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR047955988 | ||
003 | DE-627 | ||
005 | 20230509110506.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220826s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s43684-022-00039-x |2 doi | |
035 | |a (DE-627)SPR047955988 | ||
035 | |a (SPR)s43684-022-00039-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhang, Fuqiang |e verfasserin |0 (orcid)0000-0001-6161-5402 |4 aut | |
245 | 1 | 0 | |a Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. | ||
650 | 4 | |a Human–robot interaction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Operations allocation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Simulated annealing algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Collaborative effectiveness |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Yanrui |4 aut | |
700 | 1 | |a Xu, Shilin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Autonomous intelligent systems |d [Singapore] : Springer Singapore, 2021 |g 2(2022), 1 vom: 25. Aug. |w (DE-627)1770764771 |w (DE-600)3093254-3 |x 2730-616X |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2022 |g number:1 |g day:25 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s43684-022-00039-x |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2022 |e 1 |b 25 |c 08 |
author_variant |
f z fz y z yz s x sx |
---|---|
matchkey_str |
article:2730616X:2022----::olbrtoefcieesaecmlxprtosloaintaeyoad |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s43684-022-00039-x doi (DE-627)SPR047955988 (SPR)s43684-022-00039-x-e DE-627 ger DE-627 rakwb eng Zhang, Fuqiang verfasserin (orcid)0000-0001-6161-5402 aut Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. Human–robot interaction (dpeaa)DE-He213 Operations allocation (dpeaa)DE-He213 Simulated annealing algorithm (dpeaa)DE-He213 Collaborative effectiveness (dpeaa)DE-He213 Zhang, Yanrui aut Xu, Shilin aut Enthalten in Autonomous intelligent systems [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 25. Aug. (DE-627)1770764771 (DE-600)3093254-3 2730-616X nnns volume:2 year:2022 number:1 day:25 month:08 https://dx.doi.org/10.1007/s43684-022-00039-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 25 08 |
spelling |
10.1007/s43684-022-00039-x doi (DE-627)SPR047955988 (SPR)s43684-022-00039-x-e DE-627 ger DE-627 rakwb eng Zhang, Fuqiang verfasserin (orcid)0000-0001-6161-5402 aut Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. Human–robot interaction (dpeaa)DE-He213 Operations allocation (dpeaa)DE-He213 Simulated annealing algorithm (dpeaa)DE-He213 Collaborative effectiveness (dpeaa)DE-He213 Zhang, Yanrui aut Xu, Shilin aut Enthalten in Autonomous intelligent systems [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 25. Aug. (DE-627)1770764771 (DE-600)3093254-3 2730-616X nnns volume:2 year:2022 number:1 day:25 month:08 https://dx.doi.org/10.1007/s43684-022-00039-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 25 08 |
allfields_unstemmed |
10.1007/s43684-022-00039-x doi (DE-627)SPR047955988 (SPR)s43684-022-00039-x-e DE-627 ger DE-627 rakwb eng Zhang, Fuqiang verfasserin (orcid)0000-0001-6161-5402 aut Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. Human–robot interaction (dpeaa)DE-He213 Operations allocation (dpeaa)DE-He213 Simulated annealing algorithm (dpeaa)DE-He213 Collaborative effectiveness (dpeaa)DE-He213 Zhang, Yanrui aut Xu, Shilin aut Enthalten in Autonomous intelligent systems [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 25. Aug. (DE-627)1770764771 (DE-600)3093254-3 2730-616X nnns volume:2 year:2022 number:1 day:25 month:08 https://dx.doi.org/10.1007/s43684-022-00039-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 25 08 |
allfieldsGer |
10.1007/s43684-022-00039-x doi (DE-627)SPR047955988 (SPR)s43684-022-00039-x-e DE-627 ger DE-627 rakwb eng Zhang, Fuqiang verfasserin (orcid)0000-0001-6161-5402 aut Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. Human–robot interaction (dpeaa)DE-He213 Operations allocation (dpeaa)DE-He213 Simulated annealing algorithm (dpeaa)DE-He213 Collaborative effectiveness (dpeaa)DE-He213 Zhang, Yanrui aut Xu, Shilin aut Enthalten in Autonomous intelligent systems [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 25. Aug. (DE-627)1770764771 (DE-600)3093254-3 2730-616X nnns volume:2 year:2022 number:1 day:25 month:08 https://dx.doi.org/10.1007/s43684-022-00039-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 25 08 |
allfieldsSound |
10.1007/s43684-022-00039-x doi (DE-627)SPR047955988 (SPR)s43684-022-00039-x-e DE-627 ger DE-627 rakwb eng Zhang, Fuqiang verfasserin (orcid)0000-0001-6161-5402 aut Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. Human–robot interaction (dpeaa)DE-He213 Operations allocation (dpeaa)DE-He213 Simulated annealing algorithm (dpeaa)DE-He213 Collaborative effectiveness (dpeaa)DE-He213 Zhang, Yanrui aut Xu, Shilin aut Enthalten in Autonomous intelligent systems [Singapore] : Springer Singapore, 2021 2(2022), 1 vom: 25. Aug. (DE-627)1770764771 (DE-600)3093254-3 2730-616X nnns volume:2 year:2022 number:1 day:25 month:08 https://dx.doi.org/10.1007/s43684-022-00039-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2022 1 25 08 |
language |
English |
source |
Enthalten in Autonomous intelligent systems 2(2022), 1 vom: 25. Aug. volume:2 year:2022 number:1 day:25 month:08 |
sourceStr |
Enthalten in Autonomous intelligent systems 2(2022), 1 vom: 25. Aug. volume:2 year:2022 number:1 day:25 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Human–robot interaction Operations allocation Simulated annealing algorithm Collaborative effectiveness |
isfreeaccess_bool |
true |
container_title |
Autonomous intelligent systems |
authorswithroles_txt_mv |
Zhang, Fuqiang @@aut@@ Zhang, Yanrui @@aut@@ Xu, Shilin @@aut@@ |
publishDateDaySort_date |
2022-08-25T00:00:00Z |
hierarchy_top_id |
1770764771 |
id |
SPR047955988 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047955988</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509110506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220826s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43684-022-00039-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047955988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43684-022-00039-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Fuqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6161-5402</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human–robot interaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations allocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulated annealing algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collaborative effectiveness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yanrui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Shilin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Autonomous intelligent systems</subfield><subfield code="d">[Singapore] : Springer Singapore, 2021</subfield><subfield code="g">2(2022), 1 vom: 25. Aug.</subfield><subfield code="w">(DE-627)1770764771</subfield><subfield code="w">(DE-600)3093254-3</subfield><subfield code="x">2730-616X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s43684-022-00039-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Zhang, Fuqiang |
spellingShingle |
Zhang, Fuqiang misc Human–robot interaction misc Operations allocation misc Simulated annealing algorithm misc Collaborative effectiveness Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction |
authorStr |
Zhang, Fuqiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1770764771 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2730-616X |
topic_title |
Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction Human–robot interaction (dpeaa)DE-He213 Operations allocation (dpeaa)DE-He213 Simulated annealing algorithm (dpeaa)DE-He213 Collaborative effectiveness (dpeaa)DE-He213 |
topic |
misc Human–robot interaction misc Operations allocation misc Simulated annealing algorithm misc Collaborative effectiveness |
topic_unstemmed |
misc Human–robot interaction misc Operations allocation misc Simulated annealing algorithm misc Collaborative effectiveness |
topic_browse |
misc Human–robot interaction misc Operations allocation misc Simulated annealing algorithm misc Collaborative effectiveness |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Autonomous intelligent systems |
hierarchy_parent_id |
1770764771 |
hierarchy_top_title |
Autonomous intelligent systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1770764771 (DE-600)3093254-3 |
title |
Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction |
ctrlnum |
(DE-627)SPR047955988 (SPR)s43684-022-00039-x-e |
title_full |
Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction |
author_sort |
Zhang, Fuqiang |
journal |
Autonomous intelligent systems |
journalStr |
Autonomous intelligent systems |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Zhang, Fuqiang Zhang, Yanrui Xu, Shilin |
container_volume |
2 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Fuqiang |
doi_str_mv |
10.1007/s43684-022-00039-x |
normlink |
(ORCID)0000-0001-6161-5402 |
normlink_prefix_str_mv |
(orcid)0000-0001-6161-5402 |
title_sort |
collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction |
title_auth |
Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction |
abstract |
Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. © The Author(s) 2022 |
abstractGer |
Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction |
url |
https://dx.doi.org/10.1007/s43684-022-00039-x |
remote_bool |
true |
author2 |
Zhang, Yanrui Xu, Shilin |
author2Str |
Zhang, Yanrui Xu, Shilin |
ppnlink |
1770764771 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s43684-022-00039-x |
up_date |
2024-07-03T16:06:23.091Z |
_version_ |
1803574609804525568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR047955988</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509110506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220826s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43684-022-00039-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR047955988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43684-022-00039-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Fuqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6161-5402</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Under the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human–robot interaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations allocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulated annealing algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collaborative effectiveness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yanrui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Shilin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Autonomous intelligent systems</subfield><subfield code="d">[Singapore] : Springer Singapore, 2021</subfield><subfield code="g">2(2022), 1 vom: 25. Aug.</subfield><subfield code="w">(DE-627)1770764771</subfield><subfield code="w">(DE-600)3093254-3</subfield><subfield code="x">2730-616X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s43684-022-00039-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.401124 |