Performance improvement of 5G positioning utilizing multi-antenna angle measurements
Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment result...
Ausführliche Beschreibung
Autor*in: |
Guo, Wenfei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Satellite navigation - Cham : Springer Nature Switzerland AG, 2020, 3(2022), 1 vom: 05. Sept. |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2022 ; number:1 ; day:05 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s43020-022-00078-y |
---|
Katalog-ID: |
SPR048017892 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048017892 | ||
003 | DE-627 | ||
005 | 20230508034444.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220905s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s43020-022-00078-y |2 doi | |
035 | |a (DE-627)SPR048017892 | ||
035 | |a (SPR)s43020-022-00078-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Guo, Wenfei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance improvement of 5G positioning utilizing multi-antenna angle measurements |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. | ||
650 | 4 | |a 5G positioning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Angle of departure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Positioning accuracy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Positioning reliability |7 (dpeaa)DE-He213 | |
700 | 1 | |a Deng, Yue |4 aut | |
700 | 1 | |a Guo, Chi |0 (orcid)0000-0003-2022-2121 |4 aut | |
700 | 1 | |a Qi, Shufeng |4 aut | |
700 | 1 | |a Wang, Jingrong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Satellite navigation |d Cham : Springer Nature Switzerland AG, 2020 |g 3(2022), 1 vom: 05. Sept. |w (DE-627)1696030285 |w (DE-600)3018439-3 |x 2662-1363 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2022 |g number:1 |g day:05 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s43020-022-00078-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2022 |e 1 |b 05 |c 09 |
author_variant |
w g wg y d yd c g cg s q sq j w jw |
---|---|
matchkey_str |
article:26621363:2022----::efracipoeetfgoiinnuiiigutat |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s43020-022-00078-y doi (DE-627)SPR048017892 (SPR)s43020-022-00078-y-e DE-627 ger DE-627 rakwb eng Guo, Wenfei verfasserin aut Performance improvement of 5G positioning utilizing multi-antenna angle measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. 5G positioning (dpeaa)DE-He213 Angle of departure (dpeaa)DE-He213 Positioning accuracy (dpeaa)DE-He213 Positioning reliability (dpeaa)DE-He213 Deng, Yue aut Guo, Chi (orcid)0000-0003-2022-2121 aut Qi, Shufeng aut Wang, Jingrong aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 05. Sept. (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:05 month:09 https://dx.doi.org/10.1186/s43020-022-00078-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 05 09 |
spelling |
10.1186/s43020-022-00078-y doi (DE-627)SPR048017892 (SPR)s43020-022-00078-y-e DE-627 ger DE-627 rakwb eng Guo, Wenfei verfasserin aut Performance improvement of 5G positioning utilizing multi-antenna angle measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. 5G positioning (dpeaa)DE-He213 Angle of departure (dpeaa)DE-He213 Positioning accuracy (dpeaa)DE-He213 Positioning reliability (dpeaa)DE-He213 Deng, Yue aut Guo, Chi (orcid)0000-0003-2022-2121 aut Qi, Shufeng aut Wang, Jingrong aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 05. Sept. (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:05 month:09 https://dx.doi.org/10.1186/s43020-022-00078-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 05 09 |
allfields_unstemmed |
10.1186/s43020-022-00078-y doi (DE-627)SPR048017892 (SPR)s43020-022-00078-y-e DE-627 ger DE-627 rakwb eng Guo, Wenfei verfasserin aut Performance improvement of 5G positioning utilizing multi-antenna angle measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. 5G positioning (dpeaa)DE-He213 Angle of departure (dpeaa)DE-He213 Positioning accuracy (dpeaa)DE-He213 Positioning reliability (dpeaa)DE-He213 Deng, Yue aut Guo, Chi (orcid)0000-0003-2022-2121 aut Qi, Shufeng aut Wang, Jingrong aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 05. Sept. (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:05 month:09 https://dx.doi.org/10.1186/s43020-022-00078-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 05 09 |
allfieldsGer |
10.1186/s43020-022-00078-y doi (DE-627)SPR048017892 (SPR)s43020-022-00078-y-e DE-627 ger DE-627 rakwb eng Guo, Wenfei verfasserin aut Performance improvement of 5G positioning utilizing multi-antenna angle measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. 5G positioning (dpeaa)DE-He213 Angle of departure (dpeaa)DE-He213 Positioning accuracy (dpeaa)DE-He213 Positioning reliability (dpeaa)DE-He213 Deng, Yue aut Guo, Chi (orcid)0000-0003-2022-2121 aut Qi, Shufeng aut Wang, Jingrong aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 05. Sept. (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:05 month:09 https://dx.doi.org/10.1186/s43020-022-00078-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 05 09 |
allfieldsSound |
10.1186/s43020-022-00078-y doi (DE-627)SPR048017892 (SPR)s43020-022-00078-y-e DE-627 ger DE-627 rakwb eng Guo, Wenfei verfasserin aut Performance improvement of 5G positioning utilizing multi-antenna angle measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. 5G positioning (dpeaa)DE-He213 Angle of departure (dpeaa)DE-He213 Positioning accuracy (dpeaa)DE-He213 Positioning reliability (dpeaa)DE-He213 Deng, Yue aut Guo, Chi (orcid)0000-0003-2022-2121 aut Qi, Shufeng aut Wang, Jingrong aut Enthalten in Satellite navigation Cham : Springer Nature Switzerland AG, 2020 3(2022), 1 vom: 05. Sept. (DE-627)1696030285 (DE-600)3018439-3 2662-1363 nnns volume:3 year:2022 number:1 day:05 month:09 https://dx.doi.org/10.1186/s43020-022-00078-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 3 2022 1 05 09 |
language |
English |
source |
Enthalten in Satellite navigation 3(2022), 1 vom: 05. Sept. volume:3 year:2022 number:1 day:05 month:09 |
sourceStr |
Enthalten in Satellite navigation 3(2022), 1 vom: 05. Sept. volume:3 year:2022 number:1 day:05 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
5G positioning Angle of departure Positioning accuracy Positioning reliability |
isfreeaccess_bool |
true |
container_title |
Satellite navigation |
authorswithroles_txt_mv |
Guo, Wenfei @@aut@@ Deng, Yue @@aut@@ Guo, Chi @@aut@@ Qi, Shufeng @@aut@@ Wang, Jingrong @@aut@@ |
publishDateDaySort_date |
2022-09-05T00:00:00Z |
hierarchy_top_id |
1696030285 |
id |
SPR048017892 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048017892</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508034444.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220905s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43020-022-00078-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048017892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43020-022-00078-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Wenfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance improvement of 5G positioning utilizing multi-antenna angle measurements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5G positioning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Angle of departure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positioning accuracy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positioning reliability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Yue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Chi</subfield><subfield code="0">(orcid)0000-0003-2022-2121</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Shufeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jingrong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Satellite navigation</subfield><subfield code="d">Cham : Springer Nature Switzerland AG, 2020</subfield><subfield code="g">3(2022), 1 vom: 05. Sept.</subfield><subfield code="w">(DE-627)1696030285</subfield><subfield code="w">(DE-600)3018439-3</subfield><subfield code="x">2662-1363</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43020-022-00078-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Guo, Wenfei |
spellingShingle |
Guo, Wenfei misc 5G positioning misc Angle of departure misc Positioning accuracy misc Positioning reliability Performance improvement of 5G positioning utilizing multi-antenna angle measurements |
authorStr |
Guo, Wenfei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1696030285 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2662-1363 |
topic_title |
Performance improvement of 5G positioning utilizing multi-antenna angle measurements 5G positioning (dpeaa)DE-He213 Angle of departure (dpeaa)DE-He213 Positioning accuracy (dpeaa)DE-He213 Positioning reliability (dpeaa)DE-He213 |
topic |
misc 5G positioning misc Angle of departure misc Positioning accuracy misc Positioning reliability |
topic_unstemmed |
misc 5G positioning misc Angle of departure misc Positioning accuracy misc Positioning reliability |
topic_browse |
misc 5G positioning misc Angle of departure misc Positioning accuracy misc Positioning reliability |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Satellite navigation |
hierarchy_parent_id |
1696030285 |
hierarchy_top_title |
Satellite navigation |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1696030285 (DE-600)3018439-3 |
title |
Performance improvement of 5G positioning utilizing multi-antenna angle measurements |
ctrlnum |
(DE-627)SPR048017892 (SPR)s43020-022-00078-y-e |
title_full |
Performance improvement of 5G positioning utilizing multi-antenna angle measurements |
author_sort |
Guo, Wenfei |
journal |
Satellite navigation |
journalStr |
Satellite navigation |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Guo, Wenfei Deng, Yue Guo, Chi Qi, Shufeng Wang, Jingrong |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Guo, Wenfei |
doi_str_mv |
10.1186/s43020-022-00078-y |
normlink |
(ORCID)0000-0003-2022-2121 |
normlink_prefix_str_mv |
(orcid)0000-0003-2022-2121 |
title_sort |
performance improvement of 5g positioning utilizing multi-antenna angle measurements |
title_auth |
Performance improvement of 5G positioning utilizing multi-antenna angle measurements |
abstract |
Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. © The Author(s) 2022 |
abstractGer |
Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Performance improvement of 5G positioning utilizing multi-antenna angle measurements |
url |
https://dx.doi.org/10.1186/s43020-022-00078-y |
remote_bool |
true |
author2 |
Deng, Yue Guo, Chi Qi, Shufeng Wang, Jingrong |
author2Str |
Deng, Yue Guo, Chi Qi, Shufeng Wang, Jingrong |
ppnlink |
1696030285 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s43020-022-00078-y |
up_date |
2024-07-03T16:28:15.931Z |
_version_ |
1803575986414944256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048017892</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508034444.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220905s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43020-022-00078-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048017892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43020-022-00078-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Wenfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance improvement of 5G positioning utilizing multi-antenna angle measurements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Time delay-based the 5th Generation Mobile Communication Technology (5G) positioning is a main method to perform high-precision positioning in Global Navigation Satellite System (GNSS) denied areas. However, in practical applications, the occlusion of signals in a complex environment results in few observable base stations, which affects the reliability and accuracy of positioning. The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations. First, the Angle of Departure (AOD) capability of multi-antennas is integrated into Multi-Round-Trip-Time (Multi-RTT) positioning, establishing a novel 5G RTT/AOD positioning model. Then, the influencing factors of positioning performance, including the Dilution of Precision (DOP) and the accuracy of the AOD measurements, is analyzed. The relationship between DOP and RTT/AOD positioning accuracy is deduced. Afterwards, simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments. The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%, respectively, compared with the Multi-RTT method. The positioning reliability is also greatly improved. The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5G positioning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Angle of departure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positioning accuracy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positioning reliability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Yue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Chi</subfield><subfield code="0">(orcid)0000-0003-2022-2121</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Shufeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jingrong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Satellite navigation</subfield><subfield code="d">Cham : Springer Nature Switzerland AG, 2020</subfield><subfield code="g">3(2022), 1 vom: 05. Sept.</subfield><subfield code="w">(DE-627)1696030285</subfield><subfield code="w">(DE-600)3018439-3</subfield><subfield code="x">2662-1363</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43020-022-00078-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401121 |