Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model
Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this stud...
Ausführliche Beschreibung
Autor*in: |
Rezk, Nouran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of Genetic Engineering and Biotechnology - Amsterdam [u.a.] : Elsevier, 2011, 20(2022), 1 vom: 12. Sept. |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2022 ; number:1 ; day:12 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s43141-022-00409-1 |
---|
Katalog-ID: |
SPR04808235X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR04808235X | ||
003 | DE-627 | ||
005 | 20230519100256.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220913s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s43141-022-00409-1 |2 doi | |
035 | |a (DE-627)SPR04808235X | ||
035 | |a (SPR)s43141-022-00409-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Rezk, Nouran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. | ||
650 | 4 | |a Multi-drug resistant (MDR) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wound infection |7 (dpeaa)DE-He213 | |
650 | 4 | |a In vivo |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bacteriophage |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biofilm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Phage characterization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Phage isolation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Immunohistochemical (IHC) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Abdelsattar, Abdallah S. |4 aut | |
700 | 1 | |a Elzoghby, Doaa |4 aut | |
700 | 1 | |a Agwa, Mona M. |4 aut | |
700 | 1 | |a Abdelmoteleb, Mohamed |4 aut | |
700 | 1 | |a Aly, Rania G. |4 aut | |
700 | 1 | |a Fayez, Mohamed S. |4 aut | |
700 | 1 | |a Essam, Kareem |4 aut | |
700 | 1 | |a Zaki, Bishoy M. |4 aut | |
700 | 1 | |a El-Shibiny, Ayman |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of Genetic Engineering and Biotechnology |d Amsterdam [u.a.] : Elsevier, 2011 |g 20(2022), 1 vom: 12. Sept. |w (DE-627)672802031 |w (DE-600)2637420-1 |x 2090-5920 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2022 |g number:1 |g day:12 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s43141-022-00409-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2022 |e 1 |b 12 |c 09 |
author_variant |
n r nr a s a as asa d e de m m a mm mma m a ma r g a rg rga m s f ms msf k e ke b m z bm bmz a e s aes |
---|---|
matchkey_str |
article:20905920:2022----::atrohgaaoetateayootoatboirssatsuooaargnsifcinhogtpclplc |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s43141-022-00409-1 doi (DE-627)SPR04808235X (SPR)s43141-022-00409-1-e DE-627 ger DE-627 rakwb eng Rezk, Nouran verfasserin aut Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. Multi-drug resistant (MDR) (dpeaa)DE-He213 Wound infection (dpeaa)DE-He213 In vivo (dpeaa)DE-He213 Bacteriophage (dpeaa)DE-He213 Biofilm (dpeaa)DE-He213 Phage characterization (dpeaa)DE-He213 Phage isolation (dpeaa)DE-He213 Immunohistochemical (IHC) (dpeaa)DE-He213 Abdelsattar, Abdallah S. aut Elzoghby, Doaa aut Agwa, Mona M. aut Abdelmoteleb, Mohamed aut Aly, Rania G. aut Fayez, Mohamed S. aut Essam, Kareem aut Zaki, Bishoy M. aut El-Shibiny, Ayman aut Enthalten in Journal of Genetic Engineering and Biotechnology Amsterdam [u.a.] : Elsevier, 2011 20(2022), 1 vom: 12. Sept. (DE-627)672802031 (DE-600)2637420-1 2090-5920 nnns volume:20 year:2022 number:1 day:12 month:09 https://dx.doi.org/10.1186/s43141-022-00409-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 12 09 |
spelling |
10.1186/s43141-022-00409-1 doi (DE-627)SPR04808235X (SPR)s43141-022-00409-1-e DE-627 ger DE-627 rakwb eng Rezk, Nouran verfasserin aut Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. Multi-drug resistant (MDR) (dpeaa)DE-He213 Wound infection (dpeaa)DE-He213 In vivo (dpeaa)DE-He213 Bacteriophage (dpeaa)DE-He213 Biofilm (dpeaa)DE-He213 Phage characterization (dpeaa)DE-He213 Phage isolation (dpeaa)DE-He213 Immunohistochemical (IHC) (dpeaa)DE-He213 Abdelsattar, Abdallah S. aut Elzoghby, Doaa aut Agwa, Mona M. aut Abdelmoteleb, Mohamed aut Aly, Rania G. aut Fayez, Mohamed S. aut Essam, Kareem aut Zaki, Bishoy M. aut El-Shibiny, Ayman aut Enthalten in Journal of Genetic Engineering and Biotechnology Amsterdam [u.a.] : Elsevier, 2011 20(2022), 1 vom: 12. Sept. (DE-627)672802031 (DE-600)2637420-1 2090-5920 nnns volume:20 year:2022 number:1 day:12 month:09 https://dx.doi.org/10.1186/s43141-022-00409-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 12 09 |
allfields_unstemmed |
10.1186/s43141-022-00409-1 doi (DE-627)SPR04808235X (SPR)s43141-022-00409-1-e DE-627 ger DE-627 rakwb eng Rezk, Nouran verfasserin aut Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. Multi-drug resistant (MDR) (dpeaa)DE-He213 Wound infection (dpeaa)DE-He213 In vivo (dpeaa)DE-He213 Bacteriophage (dpeaa)DE-He213 Biofilm (dpeaa)DE-He213 Phage characterization (dpeaa)DE-He213 Phage isolation (dpeaa)DE-He213 Immunohistochemical (IHC) (dpeaa)DE-He213 Abdelsattar, Abdallah S. aut Elzoghby, Doaa aut Agwa, Mona M. aut Abdelmoteleb, Mohamed aut Aly, Rania G. aut Fayez, Mohamed S. aut Essam, Kareem aut Zaki, Bishoy M. aut El-Shibiny, Ayman aut Enthalten in Journal of Genetic Engineering and Biotechnology Amsterdam [u.a.] : Elsevier, 2011 20(2022), 1 vom: 12. Sept. (DE-627)672802031 (DE-600)2637420-1 2090-5920 nnns volume:20 year:2022 number:1 day:12 month:09 https://dx.doi.org/10.1186/s43141-022-00409-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 12 09 |
allfieldsGer |
10.1186/s43141-022-00409-1 doi (DE-627)SPR04808235X (SPR)s43141-022-00409-1-e DE-627 ger DE-627 rakwb eng Rezk, Nouran verfasserin aut Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. Multi-drug resistant (MDR) (dpeaa)DE-He213 Wound infection (dpeaa)DE-He213 In vivo (dpeaa)DE-He213 Bacteriophage (dpeaa)DE-He213 Biofilm (dpeaa)DE-He213 Phage characterization (dpeaa)DE-He213 Phage isolation (dpeaa)DE-He213 Immunohistochemical (IHC) (dpeaa)DE-He213 Abdelsattar, Abdallah S. aut Elzoghby, Doaa aut Agwa, Mona M. aut Abdelmoteleb, Mohamed aut Aly, Rania G. aut Fayez, Mohamed S. aut Essam, Kareem aut Zaki, Bishoy M. aut El-Shibiny, Ayman aut Enthalten in Journal of Genetic Engineering and Biotechnology Amsterdam [u.a.] : Elsevier, 2011 20(2022), 1 vom: 12. Sept. (DE-627)672802031 (DE-600)2637420-1 2090-5920 nnns volume:20 year:2022 number:1 day:12 month:09 https://dx.doi.org/10.1186/s43141-022-00409-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 12 09 |
allfieldsSound |
10.1186/s43141-022-00409-1 doi (DE-627)SPR04808235X (SPR)s43141-022-00409-1-e DE-627 ger DE-627 rakwb eng Rezk, Nouran verfasserin aut Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. Multi-drug resistant (MDR) (dpeaa)DE-He213 Wound infection (dpeaa)DE-He213 In vivo (dpeaa)DE-He213 Bacteriophage (dpeaa)DE-He213 Biofilm (dpeaa)DE-He213 Phage characterization (dpeaa)DE-He213 Phage isolation (dpeaa)DE-He213 Immunohistochemical (IHC) (dpeaa)DE-He213 Abdelsattar, Abdallah S. aut Elzoghby, Doaa aut Agwa, Mona M. aut Abdelmoteleb, Mohamed aut Aly, Rania G. aut Fayez, Mohamed S. aut Essam, Kareem aut Zaki, Bishoy M. aut El-Shibiny, Ayman aut Enthalten in Journal of Genetic Engineering and Biotechnology Amsterdam [u.a.] : Elsevier, 2011 20(2022), 1 vom: 12. Sept. (DE-627)672802031 (DE-600)2637420-1 2090-5920 nnns volume:20 year:2022 number:1 day:12 month:09 https://dx.doi.org/10.1186/s43141-022-00409-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 12 09 |
language |
English |
source |
Enthalten in Journal of Genetic Engineering and Biotechnology 20(2022), 1 vom: 12. Sept. volume:20 year:2022 number:1 day:12 month:09 |
sourceStr |
Enthalten in Journal of Genetic Engineering and Biotechnology 20(2022), 1 vom: 12. Sept. volume:20 year:2022 number:1 day:12 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multi-drug resistant (MDR) Wound infection In vivo Bacteriophage Biofilm Phage characterization Phage isolation Immunohistochemical (IHC) |
isfreeaccess_bool |
true |
container_title |
Journal of Genetic Engineering and Biotechnology |
authorswithroles_txt_mv |
Rezk, Nouran @@aut@@ Abdelsattar, Abdallah S. @@aut@@ Elzoghby, Doaa @@aut@@ Agwa, Mona M. @@aut@@ Abdelmoteleb, Mohamed @@aut@@ Aly, Rania G. @@aut@@ Fayez, Mohamed S. @@aut@@ Essam, Kareem @@aut@@ Zaki, Bishoy M. @@aut@@ El-Shibiny, Ayman @@aut@@ |
publishDateDaySort_date |
2022-09-12T00:00:00Z |
hierarchy_top_id |
672802031 |
id |
SPR04808235X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04808235X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519100256.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220913s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43141-022-00409-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04808235X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43141-022-00409-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rezk, Nouran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-drug resistant (MDR)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wound infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In vivo</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteriophage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biofilm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phage characterization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phage isolation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immunohistochemical (IHC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelsattar, Abdallah S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elzoghby, Doaa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agwa, Mona M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelmoteleb, Mohamed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aly, Rania G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fayez, Mohamed S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Essam, Kareem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaki, Bishoy M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El-Shibiny, Ayman</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Genetic Engineering and Biotechnology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2011</subfield><subfield code="g">20(2022), 1 vom: 12. Sept.</subfield><subfield code="w">(DE-627)672802031</subfield><subfield code="w">(DE-600)2637420-1</subfield><subfield code="x">2090-5920</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43141-022-00409-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Rezk, Nouran |
spellingShingle |
Rezk, Nouran misc Multi-drug resistant (MDR) misc Wound infection misc In vivo misc Bacteriophage misc Biofilm misc Phage characterization misc Phage isolation misc Immunohistochemical (IHC) Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model |
authorStr |
Rezk, Nouran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)672802031 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2090-5920 |
topic_title |
Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model Multi-drug resistant (MDR) (dpeaa)DE-He213 Wound infection (dpeaa)DE-He213 In vivo (dpeaa)DE-He213 Bacteriophage (dpeaa)DE-He213 Biofilm (dpeaa)DE-He213 Phage characterization (dpeaa)DE-He213 Phage isolation (dpeaa)DE-He213 Immunohistochemical (IHC) (dpeaa)DE-He213 |
topic |
misc Multi-drug resistant (MDR) misc Wound infection misc In vivo misc Bacteriophage misc Biofilm misc Phage characterization misc Phage isolation misc Immunohistochemical (IHC) |
topic_unstemmed |
misc Multi-drug resistant (MDR) misc Wound infection misc In vivo misc Bacteriophage misc Biofilm misc Phage characterization misc Phage isolation misc Immunohistochemical (IHC) |
topic_browse |
misc Multi-drug resistant (MDR) misc Wound infection misc In vivo misc Bacteriophage misc Biofilm misc Phage characterization misc Phage isolation misc Immunohistochemical (IHC) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Genetic Engineering and Biotechnology |
hierarchy_parent_id |
672802031 |
hierarchy_top_title |
Journal of Genetic Engineering and Biotechnology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)672802031 (DE-600)2637420-1 |
title |
Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model |
ctrlnum |
(DE-627)SPR04808235X (SPR)s43141-022-00409-1-e |
title_full |
Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model |
author_sort |
Rezk, Nouran |
journal |
Journal of Genetic Engineering and Biotechnology |
journalStr |
Journal of Genetic Engineering and Biotechnology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Rezk, Nouran Abdelsattar, Abdallah S. Elzoghby, Doaa Agwa, Mona M. Abdelmoteleb, Mohamed Aly, Rania G. Fayez, Mohamed S. Essam, Kareem Zaki, Bishoy M. El-Shibiny, Ayman |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Rezk, Nouran |
doi_str_mv |
10.1186/s43141-022-00409-1 |
title_sort |
bacteriophage as a potential therapy to control antibiotic-resistant pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model |
title_auth |
Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model |
abstract |
Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. © The Author(s) 2022 |
abstractGer |
Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. © The Author(s) 2022 |
abstract_unstemmed |
Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model |
url |
https://dx.doi.org/10.1186/s43141-022-00409-1 |
remote_bool |
true |
author2 |
Abdelsattar, Abdallah S. Elzoghby, Doaa Agwa, Mona M. Abdelmoteleb, Mohamed Aly, Rania G. Fayez, Mohamed S. Essam, Kareem Zaki, Bishoy M. El-Shibiny, Ayman |
author2Str |
Abdelsattar, Abdallah S. Elzoghby, Doaa Agwa, Mona M. Abdelmoteleb, Mohamed Aly, Rania G. Fayez, Mohamed S. Essam, Kareem Zaki, Bishoy M. El-Shibiny, Ayman |
ppnlink |
672802031 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s43141-022-00409-1 |
up_date |
2024-07-03T16:53:04.571Z |
_version_ |
1803577547370266624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR04808235X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519100256.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220913s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43141-022-00409-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR04808235X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43141-022-00409-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rezk, Nouran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log reduction after 1 h. Also, it displayed significant lytic activity and biofilm elimination against P. aeruginosa by inhibiting bacterial growth in vitro in a dose-dependent pattern with a complete reduction of the bacterial growth at a multiplicity of infection (MOI) of 100. In addition, P. aeruginosa-infected wounds treated with phages displayed 100% wound closure with a high quality of regenerated skin compared to the untreated and gentamicin-treated groups due to the complete elimination of bacterial infection. Conclusion The phage ZCPA1 exhibited high lytic activity against MDR P. aeruginosa planktonic and biofilms. In addition, phage ZCPA1 showed complete wound healing in the rat model. Hence, this research demonstrates the potential of phage therapy as a promising alternative in treating MDR P. aeruginosa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-drug resistant (MDR)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wound infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In vivo</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteriophage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biofilm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phage characterization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phage isolation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immunohistochemical (IHC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelsattar, Abdallah S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elzoghby, Doaa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agwa, Mona M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelmoteleb, Mohamed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aly, Rania G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fayez, Mohamed S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Essam, Kareem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaki, Bishoy M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El-Shibiny, Ayman</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Genetic Engineering and Biotechnology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2011</subfield><subfield code="g">20(2022), 1 vom: 12. Sept.</subfield><subfield code="w">(DE-627)672802031</subfield><subfield code="w">(DE-600)2637420-1</subfield><subfield code="x">2090-5920</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s43141-022-00409-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.400923 |