Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling
Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the a...
Ausführliche Beschreibung
Autor*in: |
Aravinthan, D. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of superconductivity - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988, 35(2022), 10 vom: 25. Juni, Seite 2831-2836 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2022 ; number:10 ; day:25 ; month:06 ; pages:2831-2836 |
Links: |
---|
DOI / URN: |
10.1007/s10948-022-06313-6 |
---|
Katalog-ID: |
SPR048112119 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048112119 | ||
003 | DE-627 | ||
005 | 20230509111629.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220916s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10948-022-06313-6 |2 doi | |
035 | |a (DE-627)SPR048112119 | ||
035 | |a (SPR)s10948-022-06313-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Aravinthan, D. |e verfasserin |0 (orcid)0000-0002-1394-3900 |4 aut | |
245 | 1 | 0 | |a Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. | ||
650 | 4 | |a Interlayer exchange coupling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Oscillatory coupling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ultrafast magnetization dynamics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multilayer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetization switching |7 (dpeaa)DE-He213 | |
650 | 4 | |a Spin transfer torque |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sabareesan, P. |4 aut | |
700 | 1 | |a Manikandan, K. |4 aut | |
700 | 1 | |a Sudharsan, J. B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of superconductivity |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 |g 35(2022), 10 vom: 25. Juni, Seite 2831-2836 |w (DE-627)313651175 |w (DE-600)2000540-4 |x 1572-9605 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2022 |g number:10 |g day:25 |g month:06 |g pages:2831-2836 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10948-022-06313-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 35 |j 2022 |e 10 |b 25 |c 06 |h 2831-2836 |
author_variant |
d a da p s ps k m km j b s jb jbs |
---|---|
matchkey_str |
article:15729605:2022----::antztosicignetlyraoilrihsiltrit |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10948-022-06313-6 doi (DE-627)SPR048112119 (SPR)s10948-022-06313-6-e DE-627 ger DE-627 rakwb eng Aravinthan, D. verfasserin (orcid)0000-0002-1394-3900 aut Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. Interlayer exchange coupling (dpeaa)DE-He213 Oscillatory coupling (dpeaa)DE-He213 Ultrafast magnetization dynamics (dpeaa)DE-He213 Multilayer (dpeaa)DE-He213 Magnetization switching (dpeaa)DE-He213 Spin transfer torque (dpeaa)DE-He213 Sabareesan, P. aut Manikandan, K. aut Sudharsan, J. B. aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 35(2022), 10 vom: 25. Juni, Seite 2831-2836 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:35 year:2022 number:10 day:25 month:06 pages:2831-2836 https://dx.doi.org/10.1007/s10948-022-06313-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 35 2022 10 25 06 2831-2836 |
spelling |
10.1007/s10948-022-06313-6 doi (DE-627)SPR048112119 (SPR)s10948-022-06313-6-e DE-627 ger DE-627 rakwb eng Aravinthan, D. verfasserin (orcid)0000-0002-1394-3900 aut Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. Interlayer exchange coupling (dpeaa)DE-He213 Oscillatory coupling (dpeaa)DE-He213 Ultrafast magnetization dynamics (dpeaa)DE-He213 Multilayer (dpeaa)DE-He213 Magnetization switching (dpeaa)DE-He213 Spin transfer torque (dpeaa)DE-He213 Sabareesan, P. aut Manikandan, K. aut Sudharsan, J. B. aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 35(2022), 10 vom: 25. Juni, Seite 2831-2836 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:35 year:2022 number:10 day:25 month:06 pages:2831-2836 https://dx.doi.org/10.1007/s10948-022-06313-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 35 2022 10 25 06 2831-2836 |
allfields_unstemmed |
10.1007/s10948-022-06313-6 doi (DE-627)SPR048112119 (SPR)s10948-022-06313-6-e DE-627 ger DE-627 rakwb eng Aravinthan, D. verfasserin (orcid)0000-0002-1394-3900 aut Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. Interlayer exchange coupling (dpeaa)DE-He213 Oscillatory coupling (dpeaa)DE-He213 Ultrafast magnetization dynamics (dpeaa)DE-He213 Multilayer (dpeaa)DE-He213 Magnetization switching (dpeaa)DE-He213 Spin transfer torque (dpeaa)DE-He213 Sabareesan, P. aut Manikandan, K. aut Sudharsan, J. B. aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 35(2022), 10 vom: 25. Juni, Seite 2831-2836 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:35 year:2022 number:10 day:25 month:06 pages:2831-2836 https://dx.doi.org/10.1007/s10948-022-06313-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 35 2022 10 25 06 2831-2836 |
allfieldsGer |
10.1007/s10948-022-06313-6 doi (DE-627)SPR048112119 (SPR)s10948-022-06313-6-e DE-627 ger DE-627 rakwb eng Aravinthan, D. verfasserin (orcid)0000-0002-1394-3900 aut Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. Interlayer exchange coupling (dpeaa)DE-He213 Oscillatory coupling (dpeaa)DE-He213 Ultrafast magnetization dynamics (dpeaa)DE-He213 Multilayer (dpeaa)DE-He213 Magnetization switching (dpeaa)DE-He213 Spin transfer torque (dpeaa)DE-He213 Sabareesan, P. aut Manikandan, K. aut Sudharsan, J. B. aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 35(2022), 10 vom: 25. Juni, Seite 2831-2836 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:35 year:2022 number:10 day:25 month:06 pages:2831-2836 https://dx.doi.org/10.1007/s10948-022-06313-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 35 2022 10 25 06 2831-2836 |
allfieldsSound |
10.1007/s10948-022-06313-6 doi (DE-627)SPR048112119 (SPR)s10948-022-06313-6-e DE-627 ger DE-627 rakwb eng Aravinthan, D. verfasserin (orcid)0000-0002-1394-3900 aut Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. Interlayer exchange coupling (dpeaa)DE-He213 Oscillatory coupling (dpeaa)DE-He213 Ultrafast magnetization dynamics (dpeaa)DE-He213 Multilayer (dpeaa)DE-He213 Magnetization switching (dpeaa)DE-He213 Spin transfer torque (dpeaa)DE-He213 Sabareesan, P. aut Manikandan, K. aut Sudharsan, J. B. aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 35(2022), 10 vom: 25. Juni, Seite 2831-2836 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:35 year:2022 number:10 day:25 month:06 pages:2831-2836 https://dx.doi.org/10.1007/s10948-022-06313-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 35 2022 10 25 06 2831-2836 |
language |
English |
source |
Enthalten in Journal of superconductivity 35(2022), 10 vom: 25. Juni, Seite 2831-2836 volume:35 year:2022 number:10 day:25 month:06 pages:2831-2836 |
sourceStr |
Enthalten in Journal of superconductivity 35(2022), 10 vom: 25. Juni, Seite 2831-2836 volume:35 year:2022 number:10 day:25 month:06 pages:2831-2836 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Interlayer exchange coupling Oscillatory coupling Ultrafast magnetization dynamics Multilayer Magnetization switching Spin transfer torque |
isfreeaccess_bool |
false |
container_title |
Journal of superconductivity |
authorswithroles_txt_mv |
Aravinthan, D. @@aut@@ Sabareesan, P. @@aut@@ Manikandan, K. @@aut@@ Sudharsan, J. B. @@aut@@ |
publishDateDaySort_date |
2022-06-25T00:00:00Z |
hierarchy_top_id |
313651175 |
id |
SPR048112119 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048112119</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509111629.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220916s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10948-022-06313-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048112119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10948-022-06313-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aravinthan, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1394-3900</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interlayer exchange coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillatory coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrafast magnetization dynamics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilayer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetization switching</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin transfer torque</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabareesan, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manikandan, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sudharsan, J. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of superconductivity</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988</subfield><subfield code="g">35(2022), 10 vom: 25. Juni, Seite 2831-2836</subfield><subfield code="w">(DE-627)313651175</subfield><subfield code="w">(DE-600)2000540-4</subfield><subfield code="x">1572-9605</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">day:25</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2831-2836</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10948-022-06313-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="b">25</subfield><subfield code="c">06</subfield><subfield code="h">2831-2836</subfield></datafield></record></collection>
|
author |
Aravinthan, D. |
spellingShingle |
Aravinthan, D. misc Interlayer exchange coupling misc Oscillatory coupling misc Ultrafast magnetization dynamics misc Multilayer misc Magnetization switching misc Spin transfer torque Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling |
authorStr |
Aravinthan, D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)313651175 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9605 |
topic_title |
Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling Interlayer exchange coupling (dpeaa)DE-He213 Oscillatory coupling (dpeaa)DE-He213 Ultrafast magnetization dynamics (dpeaa)DE-He213 Multilayer (dpeaa)DE-He213 Magnetization switching (dpeaa)DE-He213 Spin transfer torque (dpeaa)DE-He213 |
topic |
misc Interlayer exchange coupling misc Oscillatory coupling misc Ultrafast magnetization dynamics misc Multilayer misc Magnetization switching misc Spin transfer torque |
topic_unstemmed |
misc Interlayer exchange coupling misc Oscillatory coupling misc Ultrafast magnetization dynamics misc Multilayer misc Magnetization switching misc Spin transfer torque |
topic_browse |
misc Interlayer exchange coupling misc Oscillatory coupling misc Ultrafast magnetization dynamics misc Multilayer misc Magnetization switching misc Spin transfer torque |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of superconductivity |
hierarchy_parent_id |
313651175 |
hierarchy_top_title |
Journal of superconductivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)313651175 (DE-600)2000540-4 |
title |
Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling |
ctrlnum |
(DE-627)SPR048112119 (SPR)s10948-022-06313-6-e |
title_full |
Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling |
author_sort |
Aravinthan, D. |
journal |
Journal of superconductivity |
journalStr |
Journal of superconductivity |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2831 |
author_browse |
Aravinthan, D. Sabareesan, P. Manikandan, K. Sudharsan, J. B. |
container_volume |
35 |
format_se |
Elektronische Aufsätze |
author-letter |
Aravinthan, D. |
doi_str_mv |
10.1007/s10948-022-06313-6 |
normlink |
(ORCID)0000-0002-1394-3900 |
normlink_prefix_str_mv |
(orcid)0000-0002-1394-3900 |
title_sort |
magnetization switching in pentalayer nanopillar with oscillatory interlayer exchange coupling |
title_auth |
Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling |
abstract |
Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
10 |
title_short |
Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling |
url |
https://dx.doi.org/10.1007/s10948-022-06313-6 |
remote_bool |
true |
author2 |
Sabareesan, P. Manikandan, K. Sudharsan, J. B. |
author2Str |
Sabareesan, P. Manikandan, K. Sudharsan, J. B. |
ppnlink |
313651175 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10948-022-06313-6 |
up_date |
2024-07-03T17:05:15.897Z |
_version_ |
1803578314224304129 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048112119</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509111629.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220916s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10948-022-06313-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048112119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10948-022-06313-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aravinthan, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1394-3900</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetization Switching in Pentalayer Nanopillar with Oscillatory Interlayer Exchange Coupling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We investigated the influence of oscillatory interlayer exchange coupling (OXC) on spin transfer torque (STT)-assisted magnetization switching in the pentalayer nanopillar structure. The impact of OXC between the ferromagnetic layers in the pentalayer nanopillar is realised by solving the associated governing equation, namely Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. First, we calculated the critical current density needed to switch the magnetization of the free layer in the absence of OXC by analytically solving the LLGS equation and its value is %$J_c=0.46 \times 10^{11} Am^{-2}%$. Then, we studied the influence of thickness of the spacer layer on the OXC field term and how it affects the critical current density and magnetization switching behaviour by numerical simulations of LLGS equation. By controlling OXC, we reduce critical current density and magnetization switching time from peak values to 86% and 82%, respectively, which is accomplished by constructing a multilayer with optimal spacer layer thickness of 1.7 to 1.9 nm. This work paves a potential way for practical implementation of STT-based MRAMs, nano-oscillators, and logic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interlayer exchange coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillatory coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrafast magnetization dynamics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilayer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetization switching</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin transfer torque</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabareesan, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manikandan, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sudharsan, J. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of superconductivity</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988</subfield><subfield code="g">35(2022), 10 vom: 25. Juni, Seite 2831-2836</subfield><subfield code="w">(DE-627)313651175</subfield><subfield code="w">(DE-600)2000540-4</subfield><subfield code="x">1572-9605</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">day:25</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2831-2836</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10948-022-06313-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="b">25</subfield><subfield code="c">06</subfield><subfield code="h">2831-2836</subfield></datafield></record></collection>
|
score |
7.399727 |