Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation
Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $...
Ausführliche Beschreibung
Autor*in: |
Cameselle, Claudio [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Indian Geotechnical Society 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Indian geotechnical journal - New York, NY : Springer, 2012, 52(2022), 5 vom: 06. Aug., Seite 1205-1225 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2022 ; number:5 ; day:06 ; month:08 ; pages:1205-1225 |
Links: |
---|
DOI / URN: |
10.1007/s40098-022-00643-x |
---|
Katalog-ID: |
SPR048118974 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048118974 | ||
003 | DE-627 | ||
005 | 20230509111655.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220916s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40098-022-00643-x |2 doi | |
035 | |a (DE-627)SPR048118974 | ||
035 | |a (SPR)s40098-022-00643-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Cameselle, Claudio |e verfasserin |0 (orcid)0000-0003-4785-1585 |4 aut | |
245 | 1 | 0 | |a Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 | ||
520 | |a Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. | ||
650 | 4 | |a Contaminated soil |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bioremediation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electrokinetic remediation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coupled remediation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Reddy, Krishna R. |0 (orcid)0000-0002-6577-1151 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Indian geotechnical journal |d New York, NY : Springer, 2012 |g 52(2022), 5 vom: 06. Aug., Seite 1205-1225 |w (DE-627)739212354 |w (DE-600)2707502-3 |x 2277-3347 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2022 |g number:5 |g day:06 |g month:08 |g pages:1205-1225 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40098-022-00643-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 52 |j 2022 |e 5 |b 06 |c 08 |h 1205-1225 |
author_variant |
c c cc k r r kr krr |
---|---|
matchkey_str |
article:22773347:2022----::lcrboeeitocmieeetoieisnboeeitotcnlgfr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40098-022-00643-x doi (DE-627)SPR048118974 (SPR)s40098-022-00643-x-e DE-627 ger DE-627 rakwb eng Cameselle, Claudio verfasserin (orcid)0000-0003-4785-1585 aut Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. Contaminated soil (dpeaa)DE-He213 Bioremediation (dpeaa)DE-He213 Electrokinetic remediation (dpeaa)DE-He213 Coupled remediation (dpeaa)DE-He213 Reddy, Krishna R. (orcid)0000-0002-6577-1151 aut Enthalten in Indian geotechnical journal New York, NY : Springer, 2012 52(2022), 5 vom: 06. Aug., Seite 1205-1225 (DE-627)739212354 (DE-600)2707502-3 2277-3347 nnns volume:52 year:2022 number:5 day:06 month:08 pages:1205-1225 https://dx.doi.org/10.1007/s40098-022-00643-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2022 5 06 08 1205-1225 |
spelling |
10.1007/s40098-022-00643-x doi (DE-627)SPR048118974 (SPR)s40098-022-00643-x-e DE-627 ger DE-627 rakwb eng Cameselle, Claudio verfasserin (orcid)0000-0003-4785-1585 aut Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. Contaminated soil (dpeaa)DE-He213 Bioremediation (dpeaa)DE-He213 Electrokinetic remediation (dpeaa)DE-He213 Coupled remediation (dpeaa)DE-He213 Reddy, Krishna R. (orcid)0000-0002-6577-1151 aut Enthalten in Indian geotechnical journal New York, NY : Springer, 2012 52(2022), 5 vom: 06. Aug., Seite 1205-1225 (DE-627)739212354 (DE-600)2707502-3 2277-3347 nnns volume:52 year:2022 number:5 day:06 month:08 pages:1205-1225 https://dx.doi.org/10.1007/s40098-022-00643-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2022 5 06 08 1205-1225 |
allfields_unstemmed |
10.1007/s40098-022-00643-x doi (DE-627)SPR048118974 (SPR)s40098-022-00643-x-e DE-627 ger DE-627 rakwb eng Cameselle, Claudio verfasserin (orcid)0000-0003-4785-1585 aut Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. Contaminated soil (dpeaa)DE-He213 Bioremediation (dpeaa)DE-He213 Electrokinetic remediation (dpeaa)DE-He213 Coupled remediation (dpeaa)DE-He213 Reddy, Krishna R. (orcid)0000-0002-6577-1151 aut Enthalten in Indian geotechnical journal New York, NY : Springer, 2012 52(2022), 5 vom: 06. Aug., Seite 1205-1225 (DE-627)739212354 (DE-600)2707502-3 2277-3347 nnns volume:52 year:2022 number:5 day:06 month:08 pages:1205-1225 https://dx.doi.org/10.1007/s40098-022-00643-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2022 5 06 08 1205-1225 |
allfieldsGer |
10.1007/s40098-022-00643-x doi (DE-627)SPR048118974 (SPR)s40098-022-00643-x-e DE-627 ger DE-627 rakwb eng Cameselle, Claudio verfasserin (orcid)0000-0003-4785-1585 aut Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. Contaminated soil (dpeaa)DE-He213 Bioremediation (dpeaa)DE-He213 Electrokinetic remediation (dpeaa)DE-He213 Coupled remediation (dpeaa)DE-He213 Reddy, Krishna R. (orcid)0000-0002-6577-1151 aut Enthalten in Indian geotechnical journal New York, NY : Springer, 2012 52(2022), 5 vom: 06. Aug., Seite 1205-1225 (DE-627)739212354 (DE-600)2707502-3 2277-3347 nnns volume:52 year:2022 number:5 day:06 month:08 pages:1205-1225 https://dx.doi.org/10.1007/s40098-022-00643-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2022 5 06 08 1205-1225 |
allfieldsSound |
10.1007/s40098-022-00643-x doi (DE-627)SPR048118974 (SPR)s40098-022-00643-x-e DE-627 ger DE-627 rakwb eng Cameselle, Claudio verfasserin (orcid)0000-0003-4785-1585 aut Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. Contaminated soil (dpeaa)DE-He213 Bioremediation (dpeaa)DE-He213 Electrokinetic remediation (dpeaa)DE-He213 Coupled remediation (dpeaa)DE-He213 Reddy, Krishna R. (orcid)0000-0002-6577-1151 aut Enthalten in Indian geotechnical journal New York, NY : Springer, 2012 52(2022), 5 vom: 06. Aug., Seite 1205-1225 (DE-627)739212354 (DE-600)2707502-3 2277-3347 nnns volume:52 year:2022 number:5 day:06 month:08 pages:1205-1225 https://dx.doi.org/10.1007/s40098-022-00643-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 52 2022 5 06 08 1205-1225 |
language |
English |
source |
Enthalten in Indian geotechnical journal 52(2022), 5 vom: 06. Aug., Seite 1205-1225 volume:52 year:2022 number:5 day:06 month:08 pages:1205-1225 |
sourceStr |
Enthalten in Indian geotechnical journal 52(2022), 5 vom: 06. Aug., Seite 1205-1225 volume:52 year:2022 number:5 day:06 month:08 pages:1205-1225 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Contaminated soil Bioremediation Electrokinetic remediation Coupled remediation |
isfreeaccess_bool |
false |
container_title |
Indian geotechnical journal |
authorswithroles_txt_mv |
Cameselle, Claudio @@aut@@ Reddy, Krishna R. @@aut@@ |
publishDateDaySort_date |
2022-08-06T00:00:00Z |
hierarchy_top_id |
739212354 |
id |
SPR048118974 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048118974</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509111655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220916s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40098-022-00643-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048118974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40098-022-00643-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameselle, Claudio</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4785-1585</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Indian Geotechnical Society 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contaminated soil</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioremediation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrokinetic remediation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled remediation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reddy, Krishna R.</subfield><subfield code="0">(orcid)0000-0002-6577-1151</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Indian geotechnical journal</subfield><subfield code="d">New York, NY : Springer, 2012</subfield><subfield code="g">52(2022), 5 vom: 06. Aug., Seite 1205-1225</subfield><subfield code="w">(DE-627)739212354</subfield><subfield code="w">(DE-600)2707502-3</subfield><subfield code="x">2277-3347</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1205-1225</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40098-022-00643-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield><subfield code="h">1205-1225</subfield></datafield></record></collection>
|
author |
Cameselle, Claudio |
spellingShingle |
Cameselle, Claudio misc Contaminated soil misc Bioremediation misc Electrokinetic remediation misc Coupled remediation Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation |
authorStr |
Cameselle, Claudio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)739212354 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2277-3347 |
topic_title |
Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation Contaminated soil (dpeaa)DE-He213 Bioremediation (dpeaa)DE-He213 Electrokinetic remediation (dpeaa)DE-He213 Coupled remediation (dpeaa)DE-He213 |
topic |
misc Contaminated soil misc Bioremediation misc Electrokinetic remediation misc Coupled remediation |
topic_unstemmed |
misc Contaminated soil misc Bioremediation misc Electrokinetic remediation misc Coupled remediation |
topic_browse |
misc Contaminated soil misc Bioremediation misc Electrokinetic remediation misc Coupled remediation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Indian geotechnical journal |
hierarchy_parent_id |
739212354 |
hierarchy_top_title |
Indian geotechnical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)739212354 (DE-600)2707502-3 |
title |
Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation |
ctrlnum |
(DE-627)SPR048118974 (SPR)s40098-022-00643-x-e |
title_full |
Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation |
author_sort |
Cameselle, Claudio |
journal |
Indian geotechnical journal |
journalStr |
Indian geotechnical journal |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1205 |
author_browse |
Cameselle, Claudio Reddy, Krishna R. |
container_volume |
52 |
format_se |
Elektronische Aufsätze |
author-letter |
Cameselle, Claudio |
doi_str_mv |
10.1007/s40098-022-00643-x |
normlink |
(ORCID)0000-0003-4785-1585 (ORCID)0000-0002-6577-1151 |
normlink_prefix_str_mv |
(orcid)0000-0003-4785-1585 (orcid)0000-0002-6577-1151 |
title_sort |
electrobioremediation: combined electrokinetics and bioremediation technology for contaminated site remediation |
title_auth |
Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation |
abstract |
Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 |
abstractGer |
Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 |
abstract_unstemmed |
Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents. © The Author(s), under exclusive licence to Indian Geotechnical Society 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation |
url |
https://dx.doi.org/10.1007/s40098-022-00643-x |
remote_bool |
true |
author2 |
Reddy, Krishna R. |
author2Str |
Reddy, Krishna R. |
ppnlink |
739212354 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40098-022-00643-x |
up_date |
2024-07-03T17:08:02.519Z |
_version_ |
1803578488934891520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048118974</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509111655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220916s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40098-022-00643-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048118974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40098-022-00643-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameselle, Claudio</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4785-1585</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrobioremediation: Combined Electrokinetics and Bioremediation Technology for Contaminated Site Remediation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Indian Geotechnical Society 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Bioremediation of contaminated sites uses the capacity of soil microorganisms to remove, degrade or immobilize the contaminants in soils and groundwater. Organic contaminants can be degraded to simpler molecules or even completely metabolized under aerobic (final products: $ CO_{2} $ and $ H_{2} $O) or anaerobic (final products: $ CH_{4} $ and $ CO_{2} $) conditions. Soil microorganisms consume organic contaminants as a substrate for their metabolism that can be enhanced with the appropriate conditions such as pH, temperature, oxygen, nutrients and electron donors or acceptors. Inorganic anions, such as nitrate and phosphate, are consumed by the microorganisms as necessary nutrients for their metabolism. Other inorganic anions (e.g., sulfate) and heavy metals are not metabolized, but they can be transformed to less bioavailable species reducing their biotoxicity, the exposure to living organisms and the possibility of entering the trophic chain. The main limitations of bioremediation in both in situ and ex situ applications are related to the biological activity and the conditions to enhance the metabolism of soil microflora: pH, temperature, moisture, oxygen, nutrients and electron acceptors/donors. These limitations can be overcome with the simultaneous application of an electric field in the contaminated site. This coupled technology is often called electrobioremediation. The electric field and the electrokinetic transport can be used to supply nutrients, oxygen and any other substance that may enhance the microbial activity in the soils. The electrochemical reactions upon the electrodes may supply the soils with the necessary electron acceptors/donors for the metabolic reactions. The electric field may also favor the mobilization and transport of contaminants and bacteria, increasing the bioavailability of the contaminants and therefore the degradation rate. The success of electrobioremediation depends on the proper application of the electric field to achieve the appropriate environmental conditions to enhance the metabolic activity of the soil microflora, avoiding significant changes in the physicochemical characteristic of soil that may compromise the survival of the microorganisms. The main variables that affect electrobioremediation are: voltage, electric current intensity, type of current (AC/DC), mode of operation (continuous, periodic, polarity inversion), electrode material and stability, addition of nutrients and the use of other facilitating agents.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contaminated soil</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioremediation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrokinetic remediation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled remediation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reddy, Krishna R.</subfield><subfield code="0">(orcid)0000-0002-6577-1151</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Indian geotechnical journal</subfield><subfield code="d">New York, NY : Springer, 2012</subfield><subfield code="g">52(2022), 5 vom: 06. Aug., Seite 1205-1225</subfield><subfield code="w">(DE-627)739212354</subfield><subfield code="w">(DE-600)2707502-3</subfield><subfield code="x">2277-3347</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1205-1225</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40098-022-00643-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield><subfield code="h">1205-1225</subfield></datafield></record></collection>
|
score |
7.4021616 |