Application of a Chained-ANN for Learning the Process–Structure Mapping in $ Mg_{2} %$ Si_{x} %$ Sn_{1−x} $ Spinodal Decomposition

Abstract This work establishes a reliable and accurate materials process–structure (PS) surrogate model that maps an 18-dimensional process parameter input domain to a high-dimensional space of single- and dual-phase microstructures. This was accomplished by employing the Materials Knowledge Systems...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Harrington, Grayson H. [verfasserIn]

Kelly, Conlain

Attari, Vahid

Arroyave, Raymundo

Kalidindi, Surya R.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Machine learning

Chained-ANN

Materials informatics

Process–structure surrogate model

Phase-field surrogate model

Anmerkung:

© The Minerals, Metals & Materials Society 2022

Übergeordnetes Werk:

Enthalten in: Integrating materials and manufacturing innovation - Berlin : SpringerOpen, 2012, 11(2022), 3 vom: Sept., Seite 433-449

Übergeordnetes Werk:

volume:11 ; year:2022 ; number:3 ; month:09 ; pages:433-449

Links:

Volltext

DOI / URN:

10.1007/s40192-022-00274-3

Katalog-ID:

SPR048147796

Nicht das Richtige dabei?

Schreiben Sie uns!