Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance
Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt...
Ausführliche Beschreibung
Autor*in: |
Han, Xia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of plant growth regulation - New York, NY : Springer, 1982, 41(2021), 7 vom: 08. Sept., Seite 2980-2991 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2021 ; number:7 ; day:08 ; month:09 ; pages:2980-2991 |
Links: |
---|
DOI / URN: |
10.1007/s00344-021-10489-x |
---|
Katalog-ID: |
SPR048160261 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048160261 | ||
003 | DE-627 | ||
005 | 20230509112101.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220922s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00344-021-10489-x |2 doi | |
035 | |a (DE-627)SPR048160261 | ||
035 | |a (SPR)s00344-021-10489-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Han, Xia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. | ||
650 | 4 | |a Ionic homeostasis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Photosynthesis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Root architecture |7 (dpeaa)DE-He213 | |
650 | 4 | |a Water status |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Yuanyuan |4 aut | |
700 | 1 | |a Cheng, Kang |4 aut | |
700 | 1 | |a Zhang, Haoqiang |4 aut | |
700 | 1 | |a Tang, Ming |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of plant growth regulation |d New York, NY : Springer, 1982 |g 41(2021), 7 vom: 08. Sept., Seite 2980-2991 |w (DE-627)254630448 |w (DE-600)1462091-1 |x 1435-8107 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2021 |g number:7 |g day:08 |g month:09 |g pages:2980-2991 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00344-021-10489-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 41 |j 2021 |e 7 |b 08 |c 09 |h 2980-2991 |
author_variant |
x h xh y w yw k c kc h z hz m t mt |
---|---|
matchkey_str |
article:14358107:2021----::ruclryoriafnuadxgnuptsimplctoipoel |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00344-021-10489-x doi (DE-627)SPR048160261 (SPR)s00344-021-10489-x-e DE-627 ger DE-627 rakwb eng Han, Xia verfasserin aut Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. Ionic homeostasis (dpeaa)DE-He213 Photosynthesis (dpeaa)DE-He213 Root architecture (dpeaa)DE-He213 Water status (dpeaa)DE-He213 Wang, Yuanyuan aut Cheng, Kang aut Zhang, Haoqiang aut Tang, Ming aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 41(2021), 7 vom: 08. Sept., Seite 2980-2991 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:41 year:2021 number:7 day:08 month:09 pages:2980-2991 https://dx.doi.org/10.1007/s00344-021-10489-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2021 7 08 09 2980-2991 |
spelling |
10.1007/s00344-021-10489-x doi (DE-627)SPR048160261 (SPR)s00344-021-10489-x-e DE-627 ger DE-627 rakwb eng Han, Xia verfasserin aut Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. Ionic homeostasis (dpeaa)DE-He213 Photosynthesis (dpeaa)DE-He213 Root architecture (dpeaa)DE-He213 Water status (dpeaa)DE-He213 Wang, Yuanyuan aut Cheng, Kang aut Zhang, Haoqiang aut Tang, Ming aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 41(2021), 7 vom: 08. Sept., Seite 2980-2991 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:41 year:2021 number:7 day:08 month:09 pages:2980-2991 https://dx.doi.org/10.1007/s00344-021-10489-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2021 7 08 09 2980-2991 |
allfields_unstemmed |
10.1007/s00344-021-10489-x doi (DE-627)SPR048160261 (SPR)s00344-021-10489-x-e DE-627 ger DE-627 rakwb eng Han, Xia verfasserin aut Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. Ionic homeostasis (dpeaa)DE-He213 Photosynthesis (dpeaa)DE-He213 Root architecture (dpeaa)DE-He213 Water status (dpeaa)DE-He213 Wang, Yuanyuan aut Cheng, Kang aut Zhang, Haoqiang aut Tang, Ming aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 41(2021), 7 vom: 08. Sept., Seite 2980-2991 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:41 year:2021 number:7 day:08 month:09 pages:2980-2991 https://dx.doi.org/10.1007/s00344-021-10489-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2021 7 08 09 2980-2991 |
allfieldsGer |
10.1007/s00344-021-10489-x doi (DE-627)SPR048160261 (SPR)s00344-021-10489-x-e DE-627 ger DE-627 rakwb eng Han, Xia verfasserin aut Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. Ionic homeostasis (dpeaa)DE-He213 Photosynthesis (dpeaa)DE-He213 Root architecture (dpeaa)DE-He213 Water status (dpeaa)DE-He213 Wang, Yuanyuan aut Cheng, Kang aut Zhang, Haoqiang aut Tang, Ming aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 41(2021), 7 vom: 08. Sept., Seite 2980-2991 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:41 year:2021 number:7 day:08 month:09 pages:2980-2991 https://dx.doi.org/10.1007/s00344-021-10489-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2021 7 08 09 2980-2991 |
allfieldsSound |
10.1007/s00344-021-10489-x doi (DE-627)SPR048160261 (SPR)s00344-021-10489-x-e DE-627 ger DE-627 rakwb eng Han, Xia verfasserin aut Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. Ionic homeostasis (dpeaa)DE-He213 Photosynthesis (dpeaa)DE-He213 Root architecture (dpeaa)DE-He213 Water status (dpeaa)DE-He213 Wang, Yuanyuan aut Cheng, Kang aut Zhang, Haoqiang aut Tang, Ming aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 41(2021), 7 vom: 08. Sept., Seite 2980-2991 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:41 year:2021 number:7 day:08 month:09 pages:2980-2991 https://dx.doi.org/10.1007/s00344-021-10489-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2021 7 08 09 2980-2991 |
language |
English |
source |
Enthalten in Journal of plant growth regulation 41(2021), 7 vom: 08. Sept., Seite 2980-2991 volume:41 year:2021 number:7 day:08 month:09 pages:2980-2991 |
sourceStr |
Enthalten in Journal of plant growth regulation 41(2021), 7 vom: 08. Sept., Seite 2980-2991 volume:41 year:2021 number:7 day:08 month:09 pages:2980-2991 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ionic homeostasis Photosynthesis Root architecture Water status |
isfreeaccess_bool |
false |
container_title |
Journal of plant growth regulation |
authorswithroles_txt_mv |
Han, Xia @@aut@@ Wang, Yuanyuan @@aut@@ Cheng, Kang @@aut@@ Zhang, Haoqiang @@aut@@ Tang, Ming @@aut@@ |
publishDateDaySort_date |
2021-09-08T00:00:00Z |
hierarchy_top_id |
254630448 |
id |
SPR048160261 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048160261</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112101.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220922s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00344-021-10489-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048160261</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00344-021-10489-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionic homeostasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosynthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Root architecture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water status</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuanyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Kang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Haoqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Ming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of plant growth regulation</subfield><subfield code="d">New York, NY : Springer, 1982</subfield><subfield code="g">41(2021), 7 vom: 08. Sept., Seite 2980-2991</subfield><subfield code="w">(DE-627)254630448</subfield><subfield code="w">(DE-600)1462091-1</subfield><subfield code="x">1435-8107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7</subfield><subfield code="g">day:08</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2980-2991</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00344-021-10489-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2021</subfield><subfield code="e">7</subfield><subfield code="b">08</subfield><subfield code="c">09</subfield><subfield code="h">2980-2991</subfield></datafield></record></collection>
|
author |
Han, Xia |
spellingShingle |
Han, Xia misc Ionic homeostasis misc Photosynthesis misc Root architecture misc Water status Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance |
authorStr |
Han, Xia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254630448 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1435-8107 |
topic_title |
Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance Ionic homeostasis (dpeaa)DE-He213 Photosynthesis (dpeaa)DE-He213 Root architecture (dpeaa)DE-He213 Water status (dpeaa)DE-He213 |
topic |
misc Ionic homeostasis misc Photosynthesis misc Root architecture misc Water status |
topic_unstemmed |
misc Ionic homeostasis misc Photosynthesis misc Root architecture misc Water status |
topic_browse |
misc Ionic homeostasis misc Photosynthesis misc Root architecture misc Water status |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of plant growth regulation |
hierarchy_parent_id |
254630448 |
hierarchy_top_title |
Journal of plant growth regulation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254630448 (DE-600)1462091-1 |
title |
Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance |
ctrlnum |
(DE-627)SPR048160261 (SPR)s00344-021-10489-x-e |
title_full |
Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance |
author_sort |
Han, Xia |
journal |
Journal of plant growth regulation |
journalStr |
Journal of plant growth regulation |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2980 |
author_browse |
Han, Xia Wang, Yuanyuan Cheng, Kang Zhang, Haoqiang Tang, Ming |
container_volume |
41 |
format_se |
Elektronische Aufsätze |
author-letter |
Han, Xia |
doi_str_mv |
10.1007/s00344-021-10489-x |
title_sort |
arbuscular mycorrhizal fungus and exogenous potassium application improved lycium barbarum salt tolerance |
title_auth |
Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance |
abstract |
Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance |
url |
https://dx.doi.org/10.1007/s00344-021-10489-x |
remote_bool |
true |
author2 |
Wang, Yuanyuan Cheng, Kang Zhang, Haoqiang Tang, Ming |
author2Str |
Wang, Yuanyuan Cheng, Kang Zhang, Haoqiang Tang, Ming |
ppnlink |
254630448 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00344-021-10489-x |
up_date |
2024-07-03T17:24:57.283Z |
_version_ |
1803579552995213312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048160261</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112101.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220922s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00344-021-10489-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048160261</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00344-021-10489-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionic homeostasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosynthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Root architecture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water status</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuanyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Kang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Haoqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Ming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of plant growth regulation</subfield><subfield code="d">New York, NY : Springer, 1982</subfield><subfield code="g">41(2021), 7 vom: 08. Sept., Seite 2980-2991</subfield><subfield code="w">(DE-627)254630448</subfield><subfield code="w">(DE-600)1462091-1</subfield><subfield code="x">1435-8107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7</subfield><subfield code="g">day:08</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2980-2991</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00344-021-10489-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2021</subfield><subfield code="e">7</subfield><subfield code="b">08</subfield><subfield code="c">09</subfield><subfield code="h">2980-2991</subfield></datafield></record></collection>
|
score |
7.400943 |