A multi-point constraint unfitted finite element method
Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved thro...
Ausführliche Beschreibung
Autor*in: |
Freeman, Brubeck Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Advanced modeling and simulation in engineering sciences - Berlin : SpringerOpen, 2014, 9(2022), 1 vom: 21. Sept. |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:1 ; day:21 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s40323-022-00232-w |
---|
Katalog-ID: |
SPR048169226 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048169226 | ||
003 | DE-627 | ||
005 | 20230509112130.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220922s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40323-022-00232-w |2 doi | |
035 | |a (DE-627)SPR048169226 | ||
035 | |a (SPR)s40323-022-00232-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Freeman, Brubeck Lee |e verfasserin |0 (orcid)0000-0002-2414-5832 |4 aut | |
245 | 1 | 2 | |a A multi-point constraint unfitted finite element method |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. | ||
650 | 4 | |a Unfitted finite element method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cut element stability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Unfitted boundary conditions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multi-point constraints |7 (dpeaa)DE-He213 | |
650 | 4 | |a Unfitted interface |7 (dpeaa)DE-He213 | |
650 | 4 | |a Extra dof free |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Advanced modeling and simulation in engineering sciences |d Berlin : SpringerOpen, 2014 |g 9(2022), 1 vom: 21. Sept. |w (DE-627)784191816 |w (DE-600)2767724-2 |x 2213-7467 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:1 |g day:21 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40323-022-00232-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 1 |b 21 |c 09 |
author_variant |
b l f bl blf |
---|---|
matchkey_str |
article:22137467:2022----::mlioncntanuftefnte |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s40323-022-00232-w doi (DE-627)SPR048169226 (SPR)s40323-022-00232-w-e DE-627 ger DE-627 rakwb eng Freeman, Brubeck Lee verfasserin (orcid)0000-0002-2414-5832 aut A multi-point constraint unfitted finite element method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. Unfitted finite element method (dpeaa)DE-He213 Cut element stability (dpeaa)DE-He213 Unfitted boundary conditions (dpeaa)DE-He213 Multi-point constraints (dpeaa)DE-He213 Unfitted interface (dpeaa)DE-He213 Extra dof free (dpeaa)DE-He213 Enthalten in Advanced modeling and simulation in engineering sciences Berlin : SpringerOpen, 2014 9(2022), 1 vom: 21. Sept. (DE-627)784191816 (DE-600)2767724-2 2213-7467 nnns volume:9 year:2022 number:1 day:21 month:09 https://dx.doi.org/10.1186/s40323-022-00232-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 21 09 |
spelling |
10.1186/s40323-022-00232-w doi (DE-627)SPR048169226 (SPR)s40323-022-00232-w-e DE-627 ger DE-627 rakwb eng Freeman, Brubeck Lee verfasserin (orcid)0000-0002-2414-5832 aut A multi-point constraint unfitted finite element method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. Unfitted finite element method (dpeaa)DE-He213 Cut element stability (dpeaa)DE-He213 Unfitted boundary conditions (dpeaa)DE-He213 Multi-point constraints (dpeaa)DE-He213 Unfitted interface (dpeaa)DE-He213 Extra dof free (dpeaa)DE-He213 Enthalten in Advanced modeling and simulation in engineering sciences Berlin : SpringerOpen, 2014 9(2022), 1 vom: 21. Sept. (DE-627)784191816 (DE-600)2767724-2 2213-7467 nnns volume:9 year:2022 number:1 day:21 month:09 https://dx.doi.org/10.1186/s40323-022-00232-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 21 09 |
allfields_unstemmed |
10.1186/s40323-022-00232-w doi (DE-627)SPR048169226 (SPR)s40323-022-00232-w-e DE-627 ger DE-627 rakwb eng Freeman, Brubeck Lee verfasserin (orcid)0000-0002-2414-5832 aut A multi-point constraint unfitted finite element method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. Unfitted finite element method (dpeaa)DE-He213 Cut element stability (dpeaa)DE-He213 Unfitted boundary conditions (dpeaa)DE-He213 Multi-point constraints (dpeaa)DE-He213 Unfitted interface (dpeaa)DE-He213 Extra dof free (dpeaa)DE-He213 Enthalten in Advanced modeling and simulation in engineering sciences Berlin : SpringerOpen, 2014 9(2022), 1 vom: 21. Sept. (DE-627)784191816 (DE-600)2767724-2 2213-7467 nnns volume:9 year:2022 number:1 day:21 month:09 https://dx.doi.org/10.1186/s40323-022-00232-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 21 09 |
allfieldsGer |
10.1186/s40323-022-00232-w doi (DE-627)SPR048169226 (SPR)s40323-022-00232-w-e DE-627 ger DE-627 rakwb eng Freeman, Brubeck Lee verfasserin (orcid)0000-0002-2414-5832 aut A multi-point constraint unfitted finite element method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. Unfitted finite element method (dpeaa)DE-He213 Cut element stability (dpeaa)DE-He213 Unfitted boundary conditions (dpeaa)DE-He213 Multi-point constraints (dpeaa)DE-He213 Unfitted interface (dpeaa)DE-He213 Extra dof free (dpeaa)DE-He213 Enthalten in Advanced modeling and simulation in engineering sciences Berlin : SpringerOpen, 2014 9(2022), 1 vom: 21. Sept. (DE-627)784191816 (DE-600)2767724-2 2213-7467 nnns volume:9 year:2022 number:1 day:21 month:09 https://dx.doi.org/10.1186/s40323-022-00232-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 21 09 |
allfieldsSound |
10.1186/s40323-022-00232-w doi (DE-627)SPR048169226 (SPR)s40323-022-00232-w-e DE-627 ger DE-627 rakwb eng Freeman, Brubeck Lee verfasserin (orcid)0000-0002-2414-5832 aut A multi-point constraint unfitted finite element method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. Unfitted finite element method (dpeaa)DE-He213 Cut element stability (dpeaa)DE-He213 Unfitted boundary conditions (dpeaa)DE-He213 Multi-point constraints (dpeaa)DE-He213 Unfitted interface (dpeaa)DE-He213 Extra dof free (dpeaa)DE-He213 Enthalten in Advanced modeling and simulation in engineering sciences Berlin : SpringerOpen, 2014 9(2022), 1 vom: 21. Sept. (DE-627)784191816 (DE-600)2767724-2 2213-7467 nnns volume:9 year:2022 number:1 day:21 month:09 https://dx.doi.org/10.1186/s40323-022-00232-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 21 09 |
language |
English |
source |
Enthalten in Advanced modeling and simulation in engineering sciences 9(2022), 1 vom: 21. Sept. volume:9 year:2022 number:1 day:21 month:09 |
sourceStr |
Enthalten in Advanced modeling and simulation in engineering sciences 9(2022), 1 vom: 21. Sept. volume:9 year:2022 number:1 day:21 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Unfitted finite element method Cut element stability Unfitted boundary conditions Multi-point constraints Unfitted interface Extra dof free |
isfreeaccess_bool |
true |
container_title |
Advanced modeling and simulation in engineering sciences |
authorswithroles_txt_mv |
Freeman, Brubeck Lee @@aut@@ |
publishDateDaySort_date |
2022-09-21T00:00:00Z |
hierarchy_top_id |
784191816 |
id |
SPR048169226 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048169226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112130.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220922s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40323-022-00232-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048169226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40323-022-00232-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freeman, Brubeck Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2414-5832</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A multi-point constraint unfitted finite element method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unfitted finite element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cut element stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unfitted boundary conditions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-point constraints</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unfitted interface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extra dof free</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advanced modeling and simulation in engineering sciences</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">9(2022), 1 vom: 21. Sept.</subfield><subfield code="w">(DE-627)784191816</subfield><subfield code="w">(DE-600)2767724-2</subfield><subfield code="x">2213-7467</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40323-022-00232-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Freeman, Brubeck Lee |
spellingShingle |
Freeman, Brubeck Lee misc Unfitted finite element method misc Cut element stability misc Unfitted boundary conditions misc Multi-point constraints misc Unfitted interface misc Extra dof free A multi-point constraint unfitted finite element method |
authorStr |
Freeman, Brubeck Lee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)784191816 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2213-7467 |
topic_title |
A multi-point constraint unfitted finite element method Unfitted finite element method (dpeaa)DE-He213 Cut element stability (dpeaa)DE-He213 Unfitted boundary conditions (dpeaa)DE-He213 Multi-point constraints (dpeaa)DE-He213 Unfitted interface (dpeaa)DE-He213 Extra dof free (dpeaa)DE-He213 |
topic |
misc Unfitted finite element method misc Cut element stability misc Unfitted boundary conditions misc Multi-point constraints misc Unfitted interface misc Extra dof free |
topic_unstemmed |
misc Unfitted finite element method misc Cut element stability misc Unfitted boundary conditions misc Multi-point constraints misc Unfitted interface misc Extra dof free |
topic_browse |
misc Unfitted finite element method misc Cut element stability misc Unfitted boundary conditions misc Multi-point constraints misc Unfitted interface misc Extra dof free |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advanced modeling and simulation in engineering sciences |
hierarchy_parent_id |
784191816 |
hierarchy_top_title |
Advanced modeling and simulation in engineering sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)784191816 (DE-600)2767724-2 |
title |
A multi-point constraint unfitted finite element method |
ctrlnum |
(DE-627)SPR048169226 (SPR)s40323-022-00232-w-e |
title_full |
A multi-point constraint unfitted finite element method |
author_sort |
Freeman, Brubeck Lee |
journal |
Advanced modeling and simulation in engineering sciences |
journalStr |
Advanced modeling and simulation in engineering sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Freeman, Brubeck Lee |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Freeman, Brubeck Lee |
doi_str_mv |
10.1186/s40323-022-00232-w |
normlink |
(ORCID)0000-0002-2414-5832 |
normlink_prefix_str_mv |
(orcid)0000-0002-2414-5832 |
title_sort |
multi-point constraint unfitted finite element method |
title_auth |
A multi-point constraint unfitted finite element method |
abstract |
Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. © The Author(s) 2022 |
abstractGer |
Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. © The Author(s) 2022 |
abstract_unstemmed |
Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A multi-point constraint unfitted finite element method |
url |
https://dx.doi.org/10.1186/s40323-022-00232-w |
remote_bool |
true |
ppnlink |
784191816 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40323-022-00232-w |
up_date |
2024-07-03T17:28:43.394Z |
_version_ |
1803579790086635521 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048169226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112130.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220922s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40323-022-00232-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048169226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40323-022-00232-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freeman, Brubeck Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2414-5832</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A multi-point constraint unfitted finite element method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work a multi-point constraint unfitted finite element method for the solution of the Poisson equation is presented. Key features of the approach are the strong enforcement of essential boundary, and interface conditions. This, along with the stability of the method, is achieved through the use of multi-point constraints that are applied to the so-called ghost nodes that lie outside of the physical domain. Another key benefit of the approach lies in the fact that, as the degrees of freedom associated with ghost nodes are constrained, they can be removed from the system of equations. This enables the method to capture both strong and weak discontinuities with no additional degrees of freedom. In addition, the method does not require penalty parameters and can capture discontinuities using only the standard finite element basis functions. Finally, numerical results show that the method converges optimally with mesh refinement and remains well conditioned.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unfitted finite element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cut element stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unfitted boundary conditions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-point constraints</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unfitted interface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extra dof free</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advanced modeling and simulation in engineering sciences</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">9(2022), 1 vom: 21. Sept.</subfield><subfield code="w">(DE-627)784191816</subfield><subfield code="w">(DE-600)2767724-2</subfield><subfield code="x">2213-7467</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40323-022-00232-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401784 |