Energy-saving service management technology of internet of things using edge computing and deep learning
Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transi...
Ausführliche Beschreibung
Autor*in: |
Li, Defeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Complex & intelligent systems - Berlin : SpringerOpen, 2015, 8(2022), 5 vom: 18. März, Seite 3867-3879 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:5 ; day:18 ; month:03 ; pages:3867-3879 |
Links: |
---|
DOI / URN: |
10.1007/s40747-022-00666-0 |
---|
Katalog-ID: |
SPR048225908 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048225908 | ||
003 | DE-627 | ||
005 | 20230509112613.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220928s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40747-022-00666-0 |2 doi | |
035 | |a (DE-627)SPR048225908 | ||
035 | |a (SPR)s40747-022-00666-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, Defeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Energy-saving service management technology of internet of things using edge computing and deep learning |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. | ||
650 | 4 | |a Internet of things devices |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mobile edge computing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Energy-saving service management |7 (dpeaa)DE-He213 | |
650 | 4 | |a Long short-term memory model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reinforcement learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dynamic power management |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lan, Mingming |4 aut | |
700 | 1 | |a Hu, Yuan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Complex & intelligent systems |d Berlin : SpringerOpen, 2015 |g 8(2022), 5 vom: 18. März, Seite 3867-3879 |w (DE-627)835589269 |w (DE-600)2834740-7 |x 2198-6053 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:5 |g day:18 |g month:03 |g pages:3867-3879 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40747-022-00666-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 5 |b 18 |c 03 |h 3867-3879 |
author_variant |
d l dl m l ml y h yh |
---|---|
matchkey_str |
article:21986053:2022----::nryaigevcmngmntcnlgoitreotiguigde |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40747-022-00666-0 doi (DE-627)SPR048225908 (SPR)s40747-022-00666-0-e DE-627 ger DE-627 rakwb eng Li, Defeng verfasserin aut Energy-saving service management technology of internet of things using edge computing and deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. Internet of things devices (dpeaa)DE-He213 Mobile edge computing (dpeaa)DE-He213 Energy-saving service management (dpeaa)DE-He213 Long short-term memory model (dpeaa)DE-He213 Reinforcement learning (dpeaa)DE-He213 Dynamic power management (dpeaa)DE-He213 Lan, Mingming aut Hu, Yuan aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 18. März, Seite 3867-3879 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:18 month:03 pages:3867-3879 https://dx.doi.org/10.1007/s40747-022-00666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 18 03 3867-3879 |
spelling |
10.1007/s40747-022-00666-0 doi (DE-627)SPR048225908 (SPR)s40747-022-00666-0-e DE-627 ger DE-627 rakwb eng Li, Defeng verfasserin aut Energy-saving service management technology of internet of things using edge computing and deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. Internet of things devices (dpeaa)DE-He213 Mobile edge computing (dpeaa)DE-He213 Energy-saving service management (dpeaa)DE-He213 Long short-term memory model (dpeaa)DE-He213 Reinforcement learning (dpeaa)DE-He213 Dynamic power management (dpeaa)DE-He213 Lan, Mingming aut Hu, Yuan aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 18. März, Seite 3867-3879 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:18 month:03 pages:3867-3879 https://dx.doi.org/10.1007/s40747-022-00666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 18 03 3867-3879 |
allfields_unstemmed |
10.1007/s40747-022-00666-0 doi (DE-627)SPR048225908 (SPR)s40747-022-00666-0-e DE-627 ger DE-627 rakwb eng Li, Defeng verfasserin aut Energy-saving service management technology of internet of things using edge computing and deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. Internet of things devices (dpeaa)DE-He213 Mobile edge computing (dpeaa)DE-He213 Energy-saving service management (dpeaa)DE-He213 Long short-term memory model (dpeaa)DE-He213 Reinforcement learning (dpeaa)DE-He213 Dynamic power management (dpeaa)DE-He213 Lan, Mingming aut Hu, Yuan aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 18. März, Seite 3867-3879 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:18 month:03 pages:3867-3879 https://dx.doi.org/10.1007/s40747-022-00666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 18 03 3867-3879 |
allfieldsGer |
10.1007/s40747-022-00666-0 doi (DE-627)SPR048225908 (SPR)s40747-022-00666-0-e DE-627 ger DE-627 rakwb eng Li, Defeng verfasserin aut Energy-saving service management technology of internet of things using edge computing and deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. Internet of things devices (dpeaa)DE-He213 Mobile edge computing (dpeaa)DE-He213 Energy-saving service management (dpeaa)DE-He213 Long short-term memory model (dpeaa)DE-He213 Reinforcement learning (dpeaa)DE-He213 Dynamic power management (dpeaa)DE-He213 Lan, Mingming aut Hu, Yuan aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 18. März, Seite 3867-3879 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:18 month:03 pages:3867-3879 https://dx.doi.org/10.1007/s40747-022-00666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 18 03 3867-3879 |
allfieldsSound |
10.1007/s40747-022-00666-0 doi (DE-627)SPR048225908 (SPR)s40747-022-00666-0-e DE-627 ger DE-627 rakwb eng Li, Defeng verfasserin aut Energy-saving service management technology of internet of things using edge computing and deep learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. Internet of things devices (dpeaa)DE-He213 Mobile edge computing (dpeaa)DE-He213 Energy-saving service management (dpeaa)DE-He213 Long short-term memory model (dpeaa)DE-He213 Reinforcement learning (dpeaa)DE-He213 Dynamic power management (dpeaa)DE-He213 Lan, Mingming aut Hu, Yuan aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 18. März, Seite 3867-3879 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:18 month:03 pages:3867-3879 https://dx.doi.org/10.1007/s40747-022-00666-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 18 03 3867-3879 |
language |
English |
source |
Enthalten in Complex & intelligent systems 8(2022), 5 vom: 18. März, Seite 3867-3879 volume:8 year:2022 number:5 day:18 month:03 pages:3867-3879 |
sourceStr |
Enthalten in Complex & intelligent systems 8(2022), 5 vom: 18. März, Seite 3867-3879 volume:8 year:2022 number:5 day:18 month:03 pages:3867-3879 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Internet of things devices Mobile edge computing Energy-saving service management Long short-term memory model Reinforcement learning Dynamic power management |
isfreeaccess_bool |
true |
container_title |
Complex & intelligent systems |
authorswithroles_txt_mv |
Li, Defeng @@aut@@ Lan, Mingming @@aut@@ Hu, Yuan @@aut@@ |
publishDateDaySort_date |
2022-03-18T00:00:00Z |
hierarchy_top_id |
835589269 |
id |
SPR048225908 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048225908</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112613.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220928s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40747-022-00666-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048225908</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40747-022-00666-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Defeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy-saving service management technology of internet of things using edge computing and deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of things devices</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile edge computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy-saving service management</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short-term memory model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic power management</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lan, Mingming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex & intelligent systems</subfield><subfield code="d">Berlin : SpringerOpen, 2015</subfield><subfield code="g">8(2022), 5 vom: 18. März, Seite 3867-3879</subfield><subfield code="w">(DE-627)835589269</subfield><subfield code="w">(DE-600)2834740-7</subfield><subfield code="x">2198-6053</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:3867-3879</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40747-022-00666-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield><subfield code="h">3867-3879</subfield></datafield></record></collection>
|
author |
Li, Defeng |
spellingShingle |
Li, Defeng misc Internet of things devices misc Mobile edge computing misc Energy-saving service management misc Long short-term memory model misc Reinforcement learning misc Dynamic power management Energy-saving service management technology of internet of things using edge computing and deep learning |
authorStr |
Li, Defeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)835589269 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2198-6053 |
topic_title |
Energy-saving service management technology of internet of things using edge computing and deep learning Internet of things devices (dpeaa)DE-He213 Mobile edge computing (dpeaa)DE-He213 Energy-saving service management (dpeaa)DE-He213 Long short-term memory model (dpeaa)DE-He213 Reinforcement learning (dpeaa)DE-He213 Dynamic power management (dpeaa)DE-He213 |
topic |
misc Internet of things devices misc Mobile edge computing misc Energy-saving service management misc Long short-term memory model misc Reinforcement learning misc Dynamic power management |
topic_unstemmed |
misc Internet of things devices misc Mobile edge computing misc Energy-saving service management misc Long short-term memory model misc Reinforcement learning misc Dynamic power management |
topic_browse |
misc Internet of things devices misc Mobile edge computing misc Energy-saving service management misc Long short-term memory model misc Reinforcement learning misc Dynamic power management |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Complex & intelligent systems |
hierarchy_parent_id |
835589269 |
hierarchy_top_title |
Complex & intelligent systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)835589269 (DE-600)2834740-7 |
title |
Energy-saving service management technology of internet of things using edge computing and deep learning |
ctrlnum |
(DE-627)SPR048225908 (SPR)s40747-022-00666-0-e |
title_full |
Energy-saving service management technology of internet of things using edge computing and deep learning |
author_sort |
Li, Defeng |
journal |
Complex & intelligent systems |
journalStr |
Complex & intelligent systems |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
3867 |
author_browse |
Li, Defeng Lan, Mingming Hu, Yuan |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Defeng |
doi_str_mv |
10.1007/s40747-022-00666-0 |
title_sort |
energy-saving service management technology of internet of things using edge computing and deep learning |
title_auth |
Energy-saving service management technology of internet of things using edge computing and deep learning |
abstract |
Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. © The Author(s) 2022 |
abstractGer |
Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. © The Author(s) 2022 |
abstract_unstemmed |
Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Energy-saving service management technology of internet of things using edge computing and deep learning |
url |
https://dx.doi.org/10.1007/s40747-022-00666-0 |
remote_bool |
true |
author2 |
Lan, Mingming Hu, Yuan |
author2Str |
Lan, Mingming Hu, Yuan |
ppnlink |
835589269 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40747-022-00666-0 |
up_date |
2024-07-03T17:50:07.604Z |
_version_ |
1803581136679469056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048225908</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112613.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220928s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40747-022-00666-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048225908</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40747-022-00666-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Defeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy-saving service management technology of internet of things using edge computing and deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose is to solve the problems of high transmission rate and low delay in the deployment of mobile edge computing network, ensure the security and effectiveness of the Internet of things (IoT), and save resources. Dynamic power management is adopted to control the working state transition of Edge Data Center (EDC) servers. A load prediction model based on long-short term memory (LSTM) is creatively proposed. The innovation of the model is to shut down the server in idle state or low utilization in EDC, consider user mobility and EDC location information, learn the global optimal dynamic timeout threshold strategy and N-policy through trial and error reinforcement learning method, reasonably control the working state switching of the server, and realize load prediction and analysis. The results show that the performance of AdaGrad optimization solver is the best when the feature dimension is 3, the number of LSTM network layers is 6, the time series length is 30–45, the batch size is 128, the training time is 788 s, the number of units is 250, and the number of times is 350. Compared with the traditional methods, the proposed load prediction model and power management mechanism improve the prediction accuracy by 4.21%. Compared with autoregressive integrated moving average (ARIMA) load prediction, the dynamic power management method of LSTM load prediction can reduce energy consumption by 12.5% and realize the balance between EDC system performance and energy consumption. The system can effectively meet the requirements of multi-access edge computing (MEC) for low delay, high bandwidth and high reliability, reduce unnecessary energy consumption and waste, and reduce the cost of MEC service providers in actual operation. This exploration has important reference value for promoting the energy-saving development of Internet-related industries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of things devices</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile edge computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy-saving service management</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short-term memory model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic power management</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lan, Mingming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex & intelligent systems</subfield><subfield code="d">Berlin : SpringerOpen, 2015</subfield><subfield code="g">8(2022), 5 vom: 18. März, Seite 3867-3879</subfield><subfield code="w">(DE-627)835589269</subfield><subfield code="w">(DE-600)2834740-7</subfield><subfield code="x">2198-6053</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:3867-3879</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40747-022-00666-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield><subfield code="h">3867-3879</subfield></datafield></record></collection>
|
score |
7.401602 |