Time-sequential hesitant fuzzy set and its application to multi-attribute decision making
Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzz...
Ausführliche Beschreibung
Autor*in: |
Meng, Lingyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Complex & intelligent systems - Berlin : SpringerOpen, 2015, 8(2022), 5 vom: 01. Apr., Seite 4319-4338 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:5 ; day:01 ; month:04 ; pages:4319-4338 |
Links: |
---|
DOI / URN: |
10.1007/s40747-022-00690-0 |
---|
Katalog-ID: |
SPR048225940 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048225940 | ||
003 | DE-627 | ||
005 | 20230509112613.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220928s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40747-022-00690-0 |2 doi | |
035 | |a (DE-627)SPR048225940 | ||
035 | |a (SPR)s40747-022-00690-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Meng, Lingyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Time-sequential hesitant fuzzy set and its application to multi-attribute decision making |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. | ||
650 | 4 | |a Time-sequential hesitant fuzzy set |7 (dpeaa)DE-He213 | |
650 | 4 | |a MADM |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hesitant fuzzy set |7 (dpeaa)DE-He213 | |
650 | 4 | |a Distance measure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy set |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Liangqun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Complex & intelligent systems |d Berlin : SpringerOpen, 2015 |g 8(2022), 5 vom: 01. Apr., Seite 4319-4338 |w (DE-627)835589269 |w (DE-600)2834740-7 |x 2198-6053 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:5 |g day:01 |g month:04 |g pages:4319-4338 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40747-022-00690-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 5 |b 01 |c 04 |h 4319-4338 |
author_variant |
l m lm l l ll |
---|---|
matchkey_str |
article:21986053:2022----::ieeunileiatuzstnisplctotmlit |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40747-022-00690-0 doi (DE-627)SPR048225940 (SPR)s40747-022-00690-0-e DE-627 ger DE-627 rakwb eng Meng, Lingyu verfasserin aut Time-sequential hesitant fuzzy set and its application to multi-attribute decision making 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. Time-sequential hesitant fuzzy set (dpeaa)DE-He213 MADM (dpeaa)DE-He213 Hesitant fuzzy set (dpeaa)DE-He213 Distance measure (dpeaa)DE-He213 Fuzzy set (dpeaa)DE-He213 Li, Liangqun aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 01. Apr., Seite 4319-4338 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:01 month:04 pages:4319-4338 https://dx.doi.org/10.1007/s40747-022-00690-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 01 04 4319-4338 |
spelling |
10.1007/s40747-022-00690-0 doi (DE-627)SPR048225940 (SPR)s40747-022-00690-0-e DE-627 ger DE-627 rakwb eng Meng, Lingyu verfasserin aut Time-sequential hesitant fuzzy set and its application to multi-attribute decision making 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. Time-sequential hesitant fuzzy set (dpeaa)DE-He213 MADM (dpeaa)DE-He213 Hesitant fuzzy set (dpeaa)DE-He213 Distance measure (dpeaa)DE-He213 Fuzzy set (dpeaa)DE-He213 Li, Liangqun aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 01. Apr., Seite 4319-4338 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:01 month:04 pages:4319-4338 https://dx.doi.org/10.1007/s40747-022-00690-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 01 04 4319-4338 |
allfields_unstemmed |
10.1007/s40747-022-00690-0 doi (DE-627)SPR048225940 (SPR)s40747-022-00690-0-e DE-627 ger DE-627 rakwb eng Meng, Lingyu verfasserin aut Time-sequential hesitant fuzzy set and its application to multi-attribute decision making 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. Time-sequential hesitant fuzzy set (dpeaa)DE-He213 MADM (dpeaa)DE-He213 Hesitant fuzzy set (dpeaa)DE-He213 Distance measure (dpeaa)DE-He213 Fuzzy set (dpeaa)DE-He213 Li, Liangqun aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 01. Apr., Seite 4319-4338 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:01 month:04 pages:4319-4338 https://dx.doi.org/10.1007/s40747-022-00690-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 01 04 4319-4338 |
allfieldsGer |
10.1007/s40747-022-00690-0 doi (DE-627)SPR048225940 (SPR)s40747-022-00690-0-e DE-627 ger DE-627 rakwb eng Meng, Lingyu verfasserin aut Time-sequential hesitant fuzzy set and its application to multi-attribute decision making 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. Time-sequential hesitant fuzzy set (dpeaa)DE-He213 MADM (dpeaa)DE-He213 Hesitant fuzzy set (dpeaa)DE-He213 Distance measure (dpeaa)DE-He213 Fuzzy set (dpeaa)DE-He213 Li, Liangqun aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 01. Apr., Seite 4319-4338 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:01 month:04 pages:4319-4338 https://dx.doi.org/10.1007/s40747-022-00690-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 01 04 4319-4338 |
allfieldsSound |
10.1007/s40747-022-00690-0 doi (DE-627)SPR048225940 (SPR)s40747-022-00690-0-e DE-627 ger DE-627 rakwb eng Meng, Lingyu verfasserin aut Time-sequential hesitant fuzzy set and its application to multi-attribute decision making 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. Time-sequential hesitant fuzzy set (dpeaa)DE-He213 MADM (dpeaa)DE-He213 Hesitant fuzzy set (dpeaa)DE-He213 Distance measure (dpeaa)DE-He213 Fuzzy set (dpeaa)DE-He213 Li, Liangqun aut Enthalten in Complex & intelligent systems Berlin : SpringerOpen, 2015 8(2022), 5 vom: 01. Apr., Seite 4319-4338 (DE-627)835589269 (DE-600)2834740-7 2198-6053 nnns volume:8 year:2022 number:5 day:01 month:04 pages:4319-4338 https://dx.doi.org/10.1007/s40747-022-00690-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 5 01 04 4319-4338 |
language |
English |
source |
Enthalten in Complex & intelligent systems 8(2022), 5 vom: 01. Apr., Seite 4319-4338 volume:8 year:2022 number:5 day:01 month:04 pages:4319-4338 |
sourceStr |
Enthalten in Complex & intelligent systems 8(2022), 5 vom: 01. Apr., Seite 4319-4338 volume:8 year:2022 number:5 day:01 month:04 pages:4319-4338 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Time-sequential hesitant fuzzy set MADM Hesitant fuzzy set Distance measure Fuzzy set |
isfreeaccess_bool |
true |
container_title |
Complex & intelligent systems |
authorswithroles_txt_mv |
Meng, Lingyu @@aut@@ Li, Liangqun @@aut@@ |
publishDateDaySort_date |
2022-04-01T00:00:00Z |
hierarchy_top_id |
835589269 |
id |
SPR048225940 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048225940</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112613.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220928s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40747-022-00690-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048225940</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40747-022-00690-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meng, Lingyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-sequential hesitant fuzzy set and its application to multi-attribute decision making</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-sequential hesitant fuzzy set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MADM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hesitant fuzzy set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distance measure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Liangqun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex & intelligent systems</subfield><subfield code="d">Berlin : SpringerOpen, 2015</subfield><subfield code="g">8(2022), 5 vom: 01. Apr., Seite 4319-4338</subfield><subfield code="w">(DE-627)835589269</subfield><subfield code="w">(DE-600)2834740-7</subfield><subfield code="x">2198-6053</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:01</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4319-4338</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40747-022-00690-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">01</subfield><subfield code="c">04</subfield><subfield code="h">4319-4338</subfield></datafield></record></collection>
|
author |
Meng, Lingyu |
spellingShingle |
Meng, Lingyu misc Time-sequential hesitant fuzzy set misc MADM misc Hesitant fuzzy set misc Distance measure misc Fuzzy set Time-sequential hesitant fuzzy set and its application to multi-attribute decision making |
authorStr |
Meng, Lingyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)835589269 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2198-6053 |
topic_title |
Time-sequential hesitant fuzzy set and its application to multi-attribute decision making Time-sequential hesitant fuzzy set (dpeaa)DE-He213 MADM (dpeaa)DE-He213 Hesitant fuzzy set (dpeaa)DE-He213 Distance measure (dpeaa)DE-He213 Fuzzy set (dpeaa)DE-He213 |
topic |
misc Time-sequential hesitant fuzzy set misc MADM misc Hesitant fuzzy set misc Distance measure misc Fuzzy set |
topic_unstemmed |
misc Time-sequential hesitant fuzzy set misc MADM misc Hesitant fuzzy set misc Distance measure misc Fuzzy set |
topic_browse |
misc Time-sequential hesitant fuzzy set misc MADM misc Hesitant fuzzy set misc Distance measure misc Fuzzy set |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Complex & intelligent systems |
hierarchy_parent_id |
835589269 |
hierarchy_top_title |
Complex & intelligent systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)835589269 (DE-600)2834740-7 |
title |
Time-sequential hesitant fuzzy set and its application to multi-attribute decision making |
ctrlnum |
(DE-627)SPR048225940 (SPR)s40747-022-00690-0-e |
title_full |
Time-sequential hesitant fuzzy set and its application to multi-attribute decision making |
author_sort |
Meng, Lingyu |
journal |
Complex & intelligent systems |
journalStr |
Complex & intelligent systems |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
4319 |
author_browse |
Meng, Lingyu Li, Liangqun |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Meng, Lingyu |
doi_str_mv |
10.1007/s40747-022-00690-0 |
title_sort |
time-sequential hesitant fuzzy set and its application to multi-attribute decision making |
title_auth |
Time-sequential hesitant fuzzy set and its application to multi-attribute decision making |
abstract |
Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. © The Author(s) 2022 |
abstractGer |
Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. © The Author(s) 2022 |
abstract_unstemmed |
Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Time-sequential hesitant fuzzy set and its application to multi-attribute decision making |
url |
https://dx.doi.org/10.1007/s40747-022-00690-0 |
remote_bool |
true |
author2 |
Li, Liangqun |
author2Str |
Li, Liangqun |
ppnlink |
835589269 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40747-022-00690-0 |
up_date |
2024-07-03T17:50:08.283Z |
_version_ |
1803581137407180801 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048225940</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112613.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220928s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40747-022-00690-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048225940</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40747-022-00690-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meng, Lingyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-sequential hesitant fuzzy set and its application to multi-attribute decision making</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The hesitant fuzzy set has been an important tool to address problems of decision making. There are several various improved hesitant fuzzy sets, such as dual hesitant fuzzy set, hesitant interval-valued fuzzy set, and intuitionistic hesitant fuzzy set, however, no one kind of improved fuzzy sets could reflect attitude characteristics of decision makers on time-sequences. In reality, time-sequence is one important sector to reflect hesitant situations as decision makers might have different knowledges of the same alternative at different moments. To perfect the description of such hesitant situations and obtain more reasonable results of decision making, we define a new kind of hesitant fuzzy set, namely, time-sequential hesitant fuzzy set. Meanwhile, its corresponding basic operators, score function and distance measures are proposed. We also propose the concept of fluctuated hesitant information to describe hesitant degrees of decision makers on time-sequences. By comprehensively utilizing the score function, fluctuated hesitant information and distance measures under time-sequential hesitant fuzzy set, a synthetic decision model is proposed. Two illustrated examples and one real-application are utilized to illustrate the effectiveness and advantage of the synthetic decision model under time-sequential hesitant fuzzy set.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-sequential hesitant fuzzy set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MADM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hesitant fuzzy set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distance measure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Liangqun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex & intelligent systems</subfield><subfield code="d">Berlin : SpringerOpen, 2015</subfield><subfield code="g">8(2022), 5 vom: 01. Apr., Seite 4319-4338</subfield><subfield code="w">(DE-627)835589269</subfield><subfield code="w">(DE-600)2834740-7</subfield><subfield code="x">2198-6053</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:01</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4319-4338</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40747-022-00690-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">01</subfield><subfield code="c">04</subfield><subfield code="h">4319-4338</subfield></datafield></record></collection>
|
score |
7.4011183 |