MTPose: Human Pose Estimation with High-Resolution Multi-scale Transformers

Abstract HRNet (High-Resolution Networks) as reported by Sun et al. (in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), 2019) has been the state-of-the-art human pose estimation method, benefitting from its parallel high-resolution designed network structur...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Rui [verfasserIn]

Geng, Fudi

Wang, Xiangyang

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Human pose estimation

High-resolution networks

Multi-scale transformers

Multi-scale self-attention

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Übergeordnetes Werk:

Enthalten in: Neural processing letters - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994, 54(2022), 5 vom: 29. März, Seite 3941-3964

Übergeordnetes Werk:

volume:54 ; year:2022 ; number:5 ; day:29 ; month:03 ; pages:3941-3964

Links:

Volltext

DOI / URN:

10.1007/s11063-022-10794-w

Katalog-ID:

SPR048359742

Nicht das Richtige dabei?

Schreiben Sie uns!