A novel multi-scale and sparsity auto-encoder for classification

Abstract The inspiration for generating the multi-scale feature representation originates from the basic observation that multi-scale is closely related to human visual physiological characteristics. Also, since the increase of hidden layer neurons and the amount of data leads to the rise of redunda...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Huiling [verfasserIn]

Sun, Jun

Gu, Xiaofeng

Song, Wei

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Feature representation

Auto-encoder

Multi-scale feature

L

-norm

Classification

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: International journal of machine learning and cybernetics - Heidelberg : Springer, 2010, 13(2022), 12 vom: 17. Sept., Seite 3909-3925

Übergeordnetes Werk:

volume:13 ; year:2022 ; number:12 ; day:17 ; month:09 ; pages:3909-3925

Links:

Volltext

DOI / URN:

10.1007/s13042-022-01632-5

Katalog-ID:

SPR048414530

Nicht das Richtige dabei?

Schreiben Sie uns!