Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning
Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders...
Ausführliche Beschreibung
Autor*in: |
Shu, Longyong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Rock mechanics and rock engineering - Wien [u.a.] : Springer, 1969, 55(2022), 11 vom: 23. Aug., Seite 6905-6919 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2022 ; number:11 ; day:23 ; month:08 ; pages:6905-6919 |
Links: |
---|
DOI / URN: |
10.1007/s00603-022-03028-x |
---|
Katalog-ID: |
SPR048457531 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR048457531 | ||
003 | DE-627 | ||
005 | 20230509114632.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221027s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00603-022-03028-x |2 doi | |
035 | |a (DE-627)SPR048457531 | ||
035 | |a (SPR)s00603-022-03028-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Shu, Longyong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. | ||
520 | |a Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. | ||
650 | 4 | |a Coal and gas outbursts |7 (dpeaa)DE-He213 | |
650 | 4 | |a Microseismic monitoring |7 (dpeaa)DE-He213 | |
650 | 4 | |a Waveform features |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coal fracture microseismic signals |7 (dpeaa)DE-He213 | |
650 | 4 | |a Long short-term memory network |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, Zhengshuai |4 aut | |
700 | 1 | |a Wang, Kai |4 aut | |
700 | 1 | |a Zhu, Nannan |4 aut | |
700 | 1 | |a Yang, Jian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Rock mechanics and rock engineering |d Wien [u.a.] : Springer, 1969 |g 55(2022), 11 vom: 23. Aug., Seite 6905-6919 |w (DE-627)270128352 |w (DE-600)1476578-0 |x 1434-453X |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2022 |g number:11 |g day:23 |g month:08 |g pages:6905-6919 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00603-022-03028-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 55 |j 2022 |e 11 |b 23 |c 08 |h 6905-6919 |
author_variant |
l s ls z l zl k w kw n z nz j y jy |
---|---|
matchkey_str |
article:1434453X:2022----::hrceitcadlsiiainfirsimcinlihaigaefoliemlct |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00603-022-03028-x doi (DE-627)SPR048457531 (SPR)s00603-022-03028-x-e DE-627 ger DE-627 rakwb eng Shu, Longyong verfasserin aut Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. Coal and gas outbursts (dpeaa)DE-He213 Microseismic monitoring (dpeaa)DE-He213 Waveform features (dpeaa)DE-He213 Coal fracture microseismic signals (dpeaa)DE-He213 Long short-term memory network (dpeaa)DE-He213 Liu, Zhengshuai aut Wang, Kai aut Zhu, Nannan aut Yang, Jian aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 55(2022), 11 vom: 23. Aug., Seite 6905-6919 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:55 year:2022 number:11 day:23 month:08 pages:6905-6919 https://dx.doi.org/10.1007/s00603-022-03028-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2022 11 23 08 6905-6919 |
spelling |
10.1007/s00603-022-03028-x doi (DE-627)SPR048457531 (SPR)s00603-022-03028-x-e DE-627 ger DE-627 rakwb eng Shu, Longyong verfasserin aut Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. Coal and gas outbursts (dpeaa)DE-He213 Microseismic monitoring (dpeaa)DE-He213 Waveform features (dpeaa)DE-He213 Coal fracture microseismic signals (dpeaa)DE-He213 Long short-term memory network (dpeaa)DE-He213 Liu, Zhengshuai aut Wang, Kai aut Zhu, Nannan aut Yang, Jian aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 55(2022), 11 vom: 23. Aug., Seite 6905-6919 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:55 year:2022 number:11 day:23 month:08 pages:6905-6919 https://dx.doi.org/10.1007/s00603-022-03028-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2022 11 23 08 6905-6919 |
allfields_unstemmed |
10.1007/s00603-022-03028-x doi (DE-627)SPR048457531 (SPR)s00603-022-03028-x-e DE-627 ger DE-627 rakwb eng Shu, Longyong verfasserin aut Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. Coal and gas outbursts (dpeaa)DE-He213 Microseismic monitoring (dpeaa)DE-He213 Waveform features (dpeaa)DE-He213 Coal fracture microseismic signals (dpeaa)DE-He213 Long short-term memory network (dpeaa)DE-He213 Liu, Zhengshuai aut Wang, Kai aut Zhu, Nannan aut Yang, Jian aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 55(2022), 11 vom: 23. Aug., Seite 6905-6919 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:55 year:2022 number:11 day:23 month:08 pages:6905-6919 https://dx.doi.org/10.1007/s00603-022-03028-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2022 11 23 08 6905-6919 |
allfieldsGer |
10.1007/s00603-022-03028-x doi (DE-627)SPR048457531 (SPR)s00603-022-03028-x-e DE-627 ger DE-627 rakwb eng Shu, Longyong verfasserin aut Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. Coal and gas outbursts (dpeaa)DE-He213 Microseismic monitoring (dpeaa)DE-He213 Waveform features (dpeaa)DE-He213 Coal fracture microseismic signals (dpeaa)DE-He213 Long short-term memory network (dpeaa)DE-He213 Liu, Zhengshuai aut Wang, Kai aut Zhu, Nannan aut Yang, Jian aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 55(2022), 11 vom: 23. Aug., Seite 6905-6919 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:55 year:2022 number:11 day:23 month:08 pages:6905-6919 https://dx.doi.org/10.1007/s00603-022-03028-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2022 11 23 08 6905-6919 |
allfieldsSound |
10.1007/s00603-022-03028-x doi (DE-627)SPR048457531 (SPR)s00603-022-03028-x-e DE-627 ger DE-627 rakwb eng Shu, Longyong verfasserin aut Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. Coal and gas outbursts (dpeaa)DE-He213 Microseismic monitoring (dpeaa)DE-He213 Waveform features (dpeaa)DE-He213 Coal fracture microseismic signals (dpeaa)DE-He213 Long short-term memory network (dpeaa)DE-He213 Liu, Zhengshuai aut Wang, Kai aut Zhu, Nannan aut Yang, Jian aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 55(2022), 11 vom: 23. Aug., Seite 6905-6919 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:55 year:2022 number:11 day:23 month:08 pages:6905-6919 https://dx.doi.org/10.1007/s00603-022-03028-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2022 11 23 08 6905-6919 |
language |
English |
source |
Enthalten in Rock mechanics and rock engineering 55(2022), 11 vom: 23. Aug., Seite 6905-6919 volume:55 year:2022 number:11 day:23 month:08 pages:6905-6919 |
sourceStr |
Enthalten in Rock mechanics and rock engineering 55(2022), 11 vom: 23. Aug., Seite 6905-6919 volume:55 year:2022 number:11 day:23 month:08 pages:6905-6919 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coal and gas outbursts Microseismic monitoring Waveform features Coal fracture microseismic signals Long short-term memory network |
isfreeaccess_bool |
false |
container_title |
Rock mechanics and rock engineering |
authorswithroles_txt_mv |
Shu, Longyong @@aut@@ Liu, Zhengshuai @@aut@@ Wang, Kai @@aut@@ Zhu, Nannan @@aut@@ Yang, Jian @@aut@@ |
publishDateDaySort_date |
2022-08-23T00:00:00Z |
hierarchy_top_id |
270128352 |
id |
SPR048457531 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048457531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509114632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221027s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00603-022-03028-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048457531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00603-022-03028-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shu, Longyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal and gas outbursts</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microseismic monitoring</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waveform features</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal fracture microseismic signals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short-term memory network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhengshuai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Nannan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rock mechanics and rock engineering</subfield><subfield code="d">Wien [u.a.] : Springer, 1969</subfield><subfield code="g">55(2022), 11 vom: 23. Aug., Seite 6905-6919</subfield><subfield code="w">(DE-627)270128352</subfield><subfield code="w">(DE-600)1476578-0</subfield><subfield code="x">1434-453X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11</subfield><subfield code="g">day:23</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:6905-6919</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00603-022-03028-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2022</subfield><subfield code="e">11</subfield><subfield code="b">23</subfield><subfield code="c">08</subfield><subfield code="h">6905-6919</subfield></datafield></record></collection>
|
author |
Shu, Longyong |
spellingShingle |
Shu, Longyong misc Coal and gas outbursts misc Microseismic monitoring misc Waveform features misc Coal fracture microseismic signals misc Long short-term memory network Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning |
authorStr |
Shu, Longyong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)270128352 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1434-453X |
topic_title |
Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning Coal and gas outbursts (dpeaa)DE-He213 Microseismic monitoring (dpeaa)DE-He213 Waveform features (dpeaa)DE-He213 Coal fracture microseismic signals (dpeaa)DE-He213 Long short-term memory network (dpeaa)DE-He213 |
topic |
misc Coal and gas outbursts misc Microseismic monitoring misc Waveform features misc Coal fracture microseismic signals misc Long short-term memory network |
topic_unstemmed |
misc Coal and gas outbursts misc Microseismic monitoring misc Waveform features misc Coal fracture microseismic signals misc Long short-term memory network |
topic_browse |
misc Coal and gas outbursts misc Microseismic monitoring misc Waveform features misc Coal fracture microseismic signals misc Long short-term memory network |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Rock mechanics and rock engineering |
hierarchy_parent_id |
270128352 |
hierarchy_top_title |
Rock mechanics and rock engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)270128352 (DE-600)1476578-0 |
title |
Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning |
ctrlnum |
(DE-627)SPR048457531 (SPR)s00603-022-03028-x-e |
title_full |
Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning |
author_sort |
Shu, Longyong |
journal |
Rock mechanics and rock engineering |
journalStr |
Rock mechanics and rock engineering |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
6905 |
author_browse |
Shu, Longyong Liu, Zhengshuai Wang, Kai Zhu, Nannan Yang, Jian |
container_volume |
55 |
format_se |
Elektronische Aufsätze |
author-letter |
Shu, Longyong |
doi_str_mv |
10.1007/s00603-022-03028-x |
title_sort |
characteristics and classification of microseismic signals in heading face of coal mine: implication for coal and gas outburst warning |
title_auth |
Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning |
abstract |
Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines. Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning |
url |
https://dx.doi.org/10.1007/s00603-022-03028-x |
remote_bool |
true |
author2 |
Liu, Zhengshuai Wang, Kai Zhu, Nannan Yang, Jian |
author2Str |
Liu, Zhengshuai Wang, Kai Zhu, Nannan Yang, Jian |
ppnlink |
270128352 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00603-022-03028-x |
up_date |
2024-07-03T19:20:25.107Z |
_version_ |
1803586817344143360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR048457531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509114632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221027s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00603-022-03028-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR048457531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00603-022-03028-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shu, Longyong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characteristics and Classification of Microseismic Signals in Heading Face of Coal Mine: Implication for Coal and Gas Outburst Warning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Microseismic monitoring technique has been proved to be an effective method to predict catastrophic disasters in underground engineering. However, it is difficult to identify the microseismic signals of coal fracture due to the complex environment and operations in coal mine, which hinders the application of microseismic monitoring on the early warning of coal and gas outbursts (outbursts). In this work, microseismic signals in the heading face of Xinyuan coal mine were recorded under different operations, including drilling of holes, roadway support, moving of belt conveyor, driving activities, blasting and no work. The records show that the microseismic events occur frequently under driving activities, while a few microseismic events happen during the no work period. The characteristics of time domain, frequency domain and time–frequency for different microseismic signals were then analyzed based on the fast Fourier transform and short-time Fourier transform methods. The results indicate that the low-frequency waveform is well developed under the drilling of holes, roadway support, moving of belt conveyor and no work period. A short and discontinuous high-frequency waveform exists in the work of roadway support, moving of belt conveyor and no work period, which belongs to the coal fracture microseismic signals. Driving activities have massive low-frequency and high-frequency waveforms, but the high-frequency waveform corresponds to the coal fracture microseismic signals. The high-frequency waveform existing in the blasting work presents an obvious periodic feature. Combined with the long short-term memory (LSTM) network, different MS signals were further classified after extracting the maximum amplitude, dominant frequency, rising time, duration time and period from separation waveforms. Compared with the k-nearest neighbor and support vector machine models, the classification result of LSTM has the lowest loss value and highest accuracy rate of about 0.18 and 85%. The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration, which can be used to warn the outbursts in advance. This study provides a theoretical support for the early warning of outbursts and is meaningful for the safety and efficient production of coal mines.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A detailed process of the identification of coal fracture microseismic signals was established.The microseismic events of coal fracture identified by the LSTM have a better sequential response to gas concentration.The stress distribution, gas pressure and mechanical properties of coal can be reflected combined the gas concentration with the coal fracture microseismic signals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal and gas outbursts</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microseismic monitoring</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waveform features</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal fracture microseismic signals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short-term memory network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhengshuai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Nannan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rock mechanics and rock engineering</subfield><subfield code="d">Wien [u.a.] : Springer, 1969</subfield><subfield code="g">55(2022), 11 vom: 23. Aug., Seite 6905-6919</subfield><subfield code="w">(DE-627)270128352</subfield><subfield code="w">(DE-600)1476578-0</subfield><subfield code="x">1434-453X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11</subfield><subfield code="g">day:23</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:6905-6919</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00603-022-03028-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2022</subfield><subfield code="e">11</subfield><subfield code="b">23</subfield><subfield code="c">08</subfield><subfield code="h">6905-6919</subfield></datafield></record></collection>
|
score |
7.401664 |