Short-term load forecasting using time series clustering

Abstract Short-term load forecasting plays a major role in energy planning. Its accuracy has a direct impact on the way power systems are operated and managed. We propose a new Clustering-based Similar Pattern Forecasting algorithm (CSPF) for short-term load forecasting. It resorts to a K-Medoids cl...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Martins, Ana [verfasserIn]

Lagarto, João

Canacsinh, Hiren

Reis, Francisco

Cardoso, Margarida G. M. S.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Clustering time series

Distance measures

Load pattern

Sequence Pattern

Similar Pattern Method

Short-term load forecasting

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Optimization and engineering - Dordrecht [u.a.] : Springer Science + Business Media B.V, 2000, 23(2022), 4 vom: 10. Aug., Seite 2293-2314

Übergeordnetes Werk:

volume:23 ; year:2022 ; number:4 ; day:10 ; month:08 ; pages:2293-2314

Links:

Volltext

DOI / URN:

10.1007/s11081-022-09760-1

Katalog-ID:

SPR048501700

Nicht das Richtige dabei?

Schreiben Sie uns!